Novel methods for dose–response meta-analysis

Alessio Crippa

Department of Public Health Sciences (PHS) Karolinska Institutet

April 13, 2018

Background			

Acknowledgements

Main supervisor

Nicola Orsini

Co-supevisor

- Alicja Wolk
- Matteo Bottai
- Donna Spiegelman

Co-authors

Opponent

Christopher H. Schmid

Examination board

- Nele Brusselaers
- Antonio Gasparrini
- Paul Lambert

The audience

Background			
00000			

Summarize and contrast results on the relation between a quantitative exposure and the occurrence of a health outcome.

Background			
00000			

Summarize and contrast results on the relation between a quantitative exposure and the occurrence of a health outcome.

Research questions based on multiple studies:

Is there any association between increasing dose levels and the outcome? If so, what is the shape of the relationship?

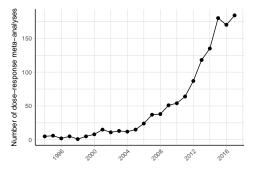
Background			
0000			

Summarize and contrast results on the relation between a quantitative exposure and the occurrence of a health outcome.

Research questions based on multiple studies:

- Is there any association between increasing dose levels and the outcome? If so, what is the shape of the relationship?
- Which exposure values are associated with the minimum or maximum response?

Background			
00000			


Summarize and contrast results on the relation between a quantitative exposure and the occurrence of a health outcome.

Research questions based on multiple studies:

- Is there any association between increasing dose levels and the outcome? If so, what is the shape of the relationship?
- Which exposure values are associated with the minimum or maximum response?
- Is there any difference in the study-specific dose-response associations? Which factors can explain the observed heterogeneity?

Background			
00000			

Increasing number of dose-response meta-analyses

Data source: Google scholar

- Several research areas
- Many leading medical and epidemiological journals
- International health organizations and academic institutions
- Measures of public health impact

Background			
00000			

Aggregated dose-response data

An example from a prospective study on coffee consumption (cups/day) and all-cause mortality (Crippa et al., *Am. J. Epidemiol*, 2014)

Exposure category	Dose	Cases	n	$\widehat{\rm RR}$	95% CI
0-1	0.5	57	249	1.00	_
2-3	2.5	136	655	0.75	0.57, 0.99
4-5	4.5	144	619	0.84	0.64, 1.10
6+	6.5	115	387	1.09	0.83, 1.43

The $\widehat{\mathrm{RRs}}$ are not independent

The predicted relative risk for reference category is 1

Background			
00000			

Two stage dose-response meta-analysis

First stage

Define and estimate a common dose–response model in each study ($i=1,\ldots,l)$

Alessio Crippa 13 April 2018

Background			
00000			

Two stage dose-response meta-analysis

First stage

Define and estimate a common dose–response model in each study ($i=1,\ldots,l$)

Second stage

Combine study-specific regression coefficients using meta-analysis

Background			
00000			

► Lack of free and open source software (*Paper I*)

Background			
00000			

- ► Lack of free and open source software (*Paper I*)
- Assessment of goodness of fit of dose-response meta-analytic models has not yet been discussed (*Paper II*)

Background			
00000			

- ► Lack of free and open source software (Paper I)
- Assessment of goodness of fit of dose-response meta-analytic models has not yet been discussed (*Paper II*)
- Little emphasis is placed on the assumptions underlying the common measures of heterogeneity (*Paper III*)

Background			
00000			

- Lack of free and open source software (Paper I)
- Assessment of goodness of fit of dose-response meta-analytic models has not yet been discussed (*Paper II*)
- Little emphasis is placed on the assumptions underlying the common measures of heterogeneity (*Paper III*)
- ► The effect of differential shape and exposure distribution is hard to be addressed in a two-stage approach (*Paper IV*)

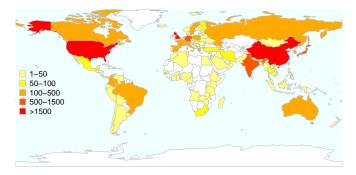
Background			
00000			

- Lack of free and open source software (Paper I)
- Assessment of goodness of fit of dose-response meta-analytic models has not yet been discussed (*Paper II*)
- Little emphasis is placed on the assumptions underlying the common measures of heterogeneity (*Paper III*)
- The effect of differential shape and exposure distribution is hard to be addressed in a two-stage approach (*Paper IV*)
- Dose-response and meta-regression models may be affected by small number of data points in some of the studies (*Paper V*)

Background	Paper I			
	00000			

Paper I

Multivariate dose-response meta-analysis: the dosresmeta R Package. *J. Stat. Softw*, 2016


Specific aim

To develop, maintain, and share a package for dose-response meta-analysis in the open source and free R software

Paper I			
0000			

The dosresmeta R package

- R> install.packages("dosresmeta")
- R> devtools::install_github("alecri/dosresmeta")

Codes and examples and at

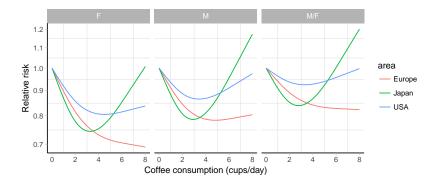
https://alecri.github.io/software/dosresmeta.html

Paper I			
00000			

Package Description

- Two-stage dose-response meta-analysis
- Greenland and Longnecker, and Hamling method
- print and summary function
- Meta-regression models
- Dedicated predict function
- Methodologies presented in the thesis

Paper I			
00000			


Coffee consumption and all-cause mortality

```
R> data("coffee_mort")
R> # linear model
R> lin <- dosresmeta(logrr ~ dose, id = id, se = se, type = type,
+
                    cases = cases, n = n, data = coffee mort)
R> # restricted cubic spline model
R> k <- quantile(coffee_mort$dose, c(.1, .5, .9))</pre>
R spl <- dosresmeta(logrr ~ rcs(dose, k), id = id, se = se, type = type,
                    cases = cases, n = n, data = coffee mort)
+
R> # restricted cubic spline meta-regression model
R> spl reg <- dosresmeta(logrr ~ rcs(dose, k), id = id, se = se,
+
                        cases = cases, n = n, type = type, data = coffee_mort,
                        mod = \tilde{g}ender + area)
+
```

Background	Paper I			
	00000			

R> expand.grid(dose = seq(0, 8, .1), gender = levels(coffee_mort\$gender),

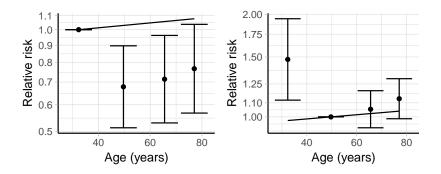
- + cbind(predict(spl_reg, newdata = ., expo = T)) %>%
- + ggplot(aes(dose, pred, col = area)) + geom_line() + facet_grid(~ gender) +
- + scale_y_continuous(trans = "log", breaks = pretty_breaks()) +
- + labs(x = "Coffee consumption (cups/day)", y = "Relative risk")

+

	Paper II		
	0000		

Paper II

Goodness of fit tools for dose-response meta-analysis of binary outcomes *Res Synth Meth*, 2017


Specific aim

 To present and discuss relevant measures and graphical tools to assess the goodness-of-fit in dose-response meta-analytic models

Background	Paper II		
	0000		

Goodness-of-fit

Does the pooled curve adequately summarize the aggregate data? This question is typically ignored in published meta-analyses A graphical comparison may be not be appropriate

Background	Paper II		
	0000		

Proposed tools

Deviance (D)

- ► Total absolute distance between fitted and reported (log) RRs
- Test for model specification

	Paper II				
00000	0000	0000	00000	00000	

Proposed tools

Deviance (D)

- ► Total absolute distance between fitted and reported (log) RRs
- Test for model specification

Coefficient of determination (R^2)

- Descriptive measure of agreement
- Dimensionless measure bounded between 0 and 1

Background	Paper I	Paper II	Paper III	Paper IV	Paper V	
00000	00000	00●0	0000	00000	00000	

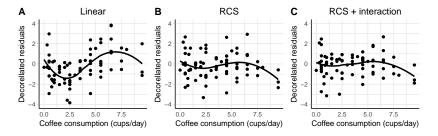
Proposed tools

Deviance (D)

- ▶ Total absolute distance between fitted and reported (log) RRs
- Test for model specification

Coefficient of determination (R^2)

- Descriptive measure of agreement
- Dimensionless measure bounded between 0 and 1


Plot of decorrelated residuals versus exposure

- Visual assessment of the goodness of fit
- Evaluate how the pooled dose-response curve fits the data by exposure levels

Background	Paper II		
	0000		

Coffee consumption and all-cause mortality

Analysis	Model	Deviance	df	p value	\mathbf{R}^2	$\rm R^2_{\rm adj}$
А	Linear	225.244	78	0.000	0.488	0.482
В	RCS	141.332	77	0.000	0.679	0.671
С	RCS + interaction	100.372	69	0.008	0.772	0.739

	Paper III		
	0000		

Paper III

A new measure of between-studies heterogeneity in meta-analysis. *Stat. Med.*, 2016

Specific aim

 To develop a new measure of between-study heterogeneity in the broader context of meta-analysis

	Paper III		
	0000		

Measures of heterogeneity

Heterogeneity measures, l^2 and $R_l,$ relate the heterogeneity, $\tau^2,$ to the total variance, $\tau^2+\sigma^2$

 σ^2 is a summary measure of the observed within-study variance, v_i

Homogeneity of within-studies variances is unlikely to hold

Analysis	v_1,\ldots,v_5	CV_{v_i}	s_{1}^{2}	s_{2}^{2}
А	5, 5.2, 4.9, 5.3, 4.8	0.04	5.0	5.0
В	4, 17, 15, 2, 3.8	0.84	5.0	4.4

	Paper III		
	0000		

R_b a new measure of heterogeneity

The new measure quantifies the contribution of τ^2 relative to the variance of the pooled random effects estimate

$$R_{b} = \frac{\tau^{2}}{I \operatorname{Var}\left(\hat{\beta}_{re}\right)} = \frac{1}{I} \sum_{i=1}^{I} \frac{\tau^{2}}{v_{i} + \tau^{2}}$$
(1)

 R_b satisifies the properties for a measure of heterogeneity

 R_b is a consistent and asymptotically normal distributed estimator (Wald-type confidence intervals)

It coincides with I^2 and R_I when $v_i = \sigma^2 \ \forall i = 1, \dots, I$

Background		Paper III		
		0000		

Red meat and bladder cancer for every 100 g per day increment

Author(s), Ye	ear			Weight	RR [95% CI]	
Cohort Nagano et al. Michaud et al Michaud et al Larsson et al Ferrucci et Jakszyn et al Subtotal (Rb	I., 2006 ⊢ I., 2006 ⊢ ., 2010 ⊢ ., 2010			7.04% 8.56% 8.74% 9.07%	0.84 [0.42, 1.70] 0.94 [0.67, 1.34] 1.03 [0.79, 1.33] 0.91 [0.71, 1.16] 1.21 [0.96, 1.52] 1.01 [0.96, 1.06] 1.01 [0.97, 1.06]	
Case-control Tavani et al., Closas et al., Hu et al., 200 Aune et al., 2 Lin et al., 201 Wu et al., 201 Isa et al., 201 Subtotal (Rb	2000 2007			9.51% 8.91% 9.02% 5.37% 7.36%	2.13 [1.50, 3.04] 0.84 [0.68, 1.02] 1.40 [1.10, 1.77] 1.34 [1.07, 1.69] 2.85 [1.79, 4.55] 1.23 [0.88, 1.71] 1.94 [1.16, 3.24] 1.51 [1.13, 2.02]	
Overall (Rb =	67%, p < 0.01)	-		100.00%	1.22 [1.05, 1.41]	
	0.65	1 1.5 2	3.5	5		
Analysis	\hat{eta} (95% CI)	Q test, p values	CV_{v_i}	<i>R̂_b</i> (95% CI)	I ² (95% CI)	Â _I (95% CI)
Red meat Red meat, Prospective	1.22 (1.05, 1.41) 1.01 (0.97, 1.06)	60, < 0.01 4, 0.6	5.94 3.51	67 (66, 68) 0 (0, 4)	80 (79, 81) 0 (0, 8)	89 (88, 89) 0 (0, 100)
Red meat, Case-control	1.51 (1.13, 2.02)	40, < 0.01	0.36	81 (80, 82)	85 (84, 86)	86 (85, 86)

Background	Paper I	Paper II	Paper III	Paper IV	Paper V	
00000	00000	0000	0000	●0000	00000	

Paper IV

A pointwise approach to dose-response meta-analysis of aggregated data.

Specific aim

To move beyond the specification of a unique model across the studies exploring possible advantages of a point-wise approach

		Paper IV	
		00000	

Paper IV

Possible limitations of a two-stage approach

- Common study-specific functional relationship (1st stage)
- Information on study-specific exposure range is not considered (2nd stage)

		Paper IV	
		00000	

Paper IV

Possible limitations of a two-stage approach

- Common study-specific functional relationship (1st stage)
- Information on study-specific exposure range is not considered (2nd stage)


Consequences

- ▶ Poor fit in some of the study-specific dose-response analyses
- Risk of extrapolating predicted relative risks

Background	Paper I	Paper II	Paper III	Paper IV	Paper V	
00000	00000	0000	0000	00€00	00000	

Individual curves for 13 studies on red meat and bladder cancer risk

Curve - Common FP (-1, -0.5) - Individual FP

Red meat (g per day)

Background		Paper IV	
		00000	

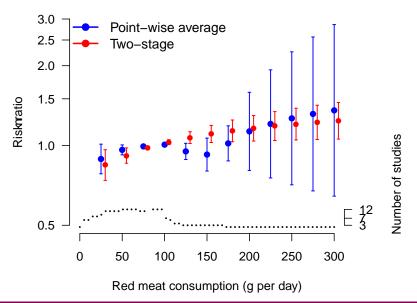
A point-wise average approach

It consists of

- Estimating study-specific dose-response curves
- Predicting study-specific effects (log RRs) for a grid of exposure values
- Combining study-specific effects

Background		Paper IV	
		00000	

A point-wise average approach


It consists of

- Estimating study-specific dose-response curves
- Predicting study-specific effects (log RRs) for a grid of exposure values
- Combining study-specific effects

Advantages

- The dose-response analyses may vary across studies
- ▶ RR predictions can be limited to study-specific exposure ranges
- ▶ Results from univariate meta-analyses can be presented pointwisely

Background			Paper V	
			00000	

Paper V

One-stage dose-response meta-analysis for aggregated data. *Stat. Methods Med. Res.*, 2018

Specific aim

 To avoid exclusion of studies in order to fit more complex and informative models in an alternative one-stage approach for dose-response meta-analysis

Background			Paper V	
			00000	

Paper V

Study-specific dose-response analyses are often limited (1 to 3 log RRs) Studies reporting one RR are excluded to model non-linear curves

A one-stage procedure for random-effects meta-analysis of non-linear curves

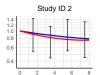
- Conceptually easier
- ► Fit more elaborate curves
- Avoid exclusion of studies with small observations

		Paper V	
		00000	

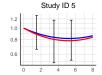
A one-stage approach

General form of a linear mixed model

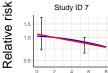
$$\mathbf{y}_i = \mathbf{X}_i \boldsymbol{\beta} + \mathbf{Z}_i \mathbf{b}_i + \boldsymbol{\varepsilon}_i \tag{2}$$

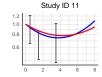

$$\mathbf{Z}_{i} \equiv \mathbf{X}_{i} \ \varepsilon_{i} \sim N\left(\mathbf{0}, \mathbf{S}_{i}
ight)$$
 and $\mathbf{b}_{i} \sim N\left(\mathbf{0}, \mathbf{\Psi}
ight)$

Established theory for inference, heterogeneity assessment, and prediction


If the study-specific dose-response models are identifiable, the one- and two-stage approaches are equivalent

		Paper V	
		00000	


Individual curves for 12 studies on coffee and mortality

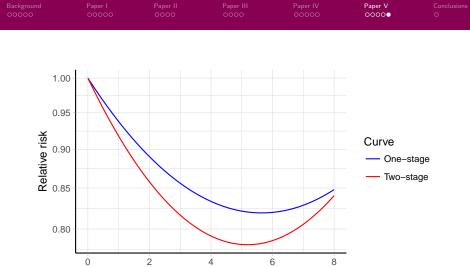


Study ID 17

4

8

Ó



Coffee consumption (cups/day)

Curve - One-stage - Two-stage

Coffee consumption (cups/day)

			Conclusions
			•

Methodological advancements in dose-response meta-analysis

			Conclusions
			•

Methodological advancements in dose-response meta-analysis **Practice**

▶ The dosresmeta R package greatly facilitates applications

			Conclusions
			•

Methodological advancements in dose-response meta-analysis **Practice**

▶ The dosresmeta R package greatly facilitates applications

Interpretation

- ▶ The proposed tools can help to evaluate the goodness-of-fit
- ► The Â_b quantifies the impact of heterogeneity without any assumption about the within-study error term

			Conclusions
			•

Methodological advancements in dose-response meta-analysis **Practice**

▶ The dosresmeta R package greatly facilitates applications

Interpretation

- The proposed tools can help to evaluate the goodness-of-fit
- ► The R̂_b quantifies the impact of heterogeneity without any assumption about the within-study error term

Estimation

- A point-wise approach for evaluating heterogeneous curves and exposure distributions
- ► A one-stage meta-analysis for addressing more elaborated research questions based on all of the information available