

Novel methods for dose-response meta-analysis

Half-time seminar

Alessio Crippa

12th May 2016

Background and Aims 00000000	Paper I 0000	Paper II 00000	Paper III 00000	Paper IV 0000	

Acknowledgements

The members of the half-time committee

- Paul Lambert, University of Leicester
- Finn Rasmussen, Karolinska Institutet
- Martin Sköld, Stockholm University

My main supervisor

Nicola Orsini, Karolinska Institutet

My co-supervisors

- Alicja Wolk, Karolinska Institutet
- Matteo Bottai, Karolinska Institutet
- Donna Spiegelman, Harvard School of Public Health

My mentor and co-authors

The audience

Background and Aims					
•0000000	0000	00000	00000	0000	00

Dose-response meta-analysis

Summarize results on the relation between a quantitive exposure and the occurence of a health outcome

Research questions

- Is there any association between the quantitative exposure and the outcome? What is the shape of the association?
- What are the exposure values associated with the best or worst outcome?
- What are the factors that can influence the dose-response shape?

Background and Aims			
0000000			

Increasing number of dose-response meta-analysis

Data source: Web of Science

- Several fields of application
- Many leading medical and epidemiological journals
- Global health organizations and foundations
- Measures of public health impact

Background and Aims 00●00000	Paper I 0000	Paper II 00000	Paper III 00000	Paper IV 0000	

Aggregated data

An example form a case-control data on alcohol consumption and breast cancer risk

g/day	dose	case	n	RR	95% CI
Ref.	0	165	337	1.00	—
<2.5	2	74	167	0.80	0.51, 1.27
2.5-9.3	6	90	186	1.16	0.73, 1.85
>9.3	11	122	212	1.57	0.99, 2.51

The RRs are not independent

```
\mathsf{RR} = 1 for the referent category
```

Background and Aims	Paper I	Paper II	Paper III	Paper IV	
000000					

Two stage dose-response meta-analysis

First stage

Define and estimate a common dose-response model in each study

 $(i = 1, \ldots, K)$

Second stage

Combine study-specific regression coefficients

Background and Aims	Paper I 0000	Paper II 00000	Paper III 00000	Paper IV 0000	

Dose-response analysis

Log-linear model

$$\mathbf{y}_i = \mathbf{X}_i \boldsymbol{\beta}_i + \boldsymbol{\varepsilon}_i \tag{1}$$

 \mathbf{y}_i vector of non-referent log RRs in the *i*-th study

- \mathbf{X}_i contains the assigned doses (and/or transformations)
 - Model without intercept
 - $\operatorname{Cov}(\varepsilon_i) = \mathbf{\Sigma}_i$ can be approximated

$$\hat{\boldsymbol{\beta}}_{i} = (\mathbf{X}_{i}^{\top} \boldsymbol{\Sigma}_{i}^{-1} \boldsymbol{X}_{i})^{-1} \boldsymbol{X}_{i}^{\top} \boldsymbol{\Sigma}_{i}^{-1} \mathbf{y}_{i}$$
$$\mathbf{V}_{i} = \operatorname{Cov}(\hat{\boldsymbol{\beta}}_{i}) = (\mathbf{X}_{i}^{\top} \boldsymbol{\Sigma}_{i}^{-1} \mathbf{X}_{i})^{-1}$$
(2)

Background and Aims 00000●00	Paper I 0000	Paper II 00000	Paper III 00000	Paper IV 0000	

Meta-analysis

Pooling of
$$\hat{m{eta}} = \left[\hat{m{eta}}_1, \dots, \hat{m{eta}}_{m{K}}
ight]$$
 and $m{V} = [m{V}_1, \dots, m{V}_{m{K}}]$

Multivariate random-effect meta-analysis

$$\hat{\beta}_{\mathbf{i}} \sim N_{p}(\beta, \mathbf{V}_{\mathbf{i}} + \psi)$$
 (3)

 ψ is the between–study covariance matrix

Cochran Q test and measures of heterogeneity

Background and Aims	Paper I	Paper II	Paper III	Paper IV	

Previous methodological papers

- Random–effects and meta–regression
- Multivariate meta–analysis
- Approximating covariance matrices
- Flexible modeling
- Non-zero reference category
- Evaluation of sources of bias and sensitivity analyses

Background and Aims 0000000●	Paper I 0000	Paper II 00000	Paper III 00000	Paper IV 0000	

Open questions

- Assessment of goodness of fit of dose-response meta-analytic models has not yet been discussed (*Paper I*)
- Little emphasis is placed on the assumptions underneath the common measures of heterogeneity (*Paper II*)
- The effect of differential shape and exposure distribution is hard to be addressed in a two-stage approach (*Paper III*)
- Dose-response and meta-regression models may be affected by small number of data points in some of the studies (*Paper IV*)

Background and Aims 00000000	Paper I ●000	Paper II 00000	Paper III 00000	Paper IV 0000	
Paper I					

Goodness of fit tools for dose-response meta-analysis of binary outcomes. *Res Synth Meth*, 2015

Specific aim

 To present and discuss different tools to evaluate the goodness of fit of dose–response meta–analysis of binary outcomes

Background and Aims	Paper I 0●00	Paper II 00000	Paper III 00000	Paper IV 0000	

Paper I

Does the pooled curve adequately summarize the aggregate data? This question is typically ignored in published meta-analyses Those that address this question ignore the correlation among the RRs

Background and Aims 00000000	Paper I 00●0	Paper II 00000	Paper III 00000	Paper IV 0000	

Paper I – Goodness of fit tools

Deviance (D)

- Total absolute distance between fitted and reported RRs
- Test for model specification

Coefficient of determination (R^2)

- Descriptive measure of agreement
- Dimensionless measure bounded between 0 and 1

Plot of decorrelated residuals versus exposure

- Visual assessment of the goodness of fit
- Evaluate how the pooled dose-response curve fits the data by exposure levels

All these tools take into account the correlation between the RRs

Background and Aims	Paper I 000●	Paper II 00000	Paper III 00000	Paper IV 0000	References 00
Paper I					

Paper I

Is the fit of the dose-response curve coffee and risk of stroke adequate?

Model	Deviance	df	<i>p</i> -value	R ²	R^2_{adj}
1) Linear	140	51	< 0.0001	41%	39%
2) RCS with 3 knots	75	50	0.01	68%	67%
3) RCS with 3 knots $+$ interaction	64	48	0.06	73%	70%

Background and Aims 00000000	Paper I 0000	Paper II ●0000	Paper III 00000	Paper IV 0000	
D					

Paper II

A new measure of between-studies heterogeneity in meta-analysis. *Stat. Med*, 2016

Specific aims

- ► To propose a new measure of heterogeneity
- Compare the performances of the new estimator through simulations studies

Background and Aims	Paper I 0000	Paper II 0●000	Paper III 00000	Paper IV 0000	

Paper II

Heterogeneity measures, I^2 and R_I , relates the heterogeneity, τ^2 , to the total variance, $\tau^2 + \sigma^2$

 σ^2 is a summary measure of the observed within-study variance, v_i

Homogeneity of within-studies variances is unlikely to hold

Analysis	within-study variances	$\sigma^2(I^2)$	$\sigma^2(R_l)$
А	[6, 6.1, 6.2, 5.9, 6, 5.9, 6.1, 5.8, 6, 6.2]	6.018	6.017
В	[5, 19, 3, 15, 6, 23, 4, 17, 2, 8.8]	6.017	5.602

A measure that relaxes this assumption is desirable

Background and Aims	Paper I 0000	Paper II 00●00	Paper III 00000	Paper IV 0000	

Paper II - R_b a new measure of heterogeneity

The new measure quantifies the contribution of τ^2 relative to the variance of the pooled random effects estimate

$$R_{b} = \frac{\tau^{2}}{K \operatorname{Var}\left(\hat{\beta}_{re}\right)} = \frac{1}{K} \sum_{i=1}^{K} \frac{\tau^{2}}{v_{i} + \tau^{2}}$$
(4)

 R_b satisfied the properties for a measure of heterogeneity

 R_b is a consistent and asymptotically normal distributed estimator (Wald-type confidence intervals)

It coincides with I^2 and R_I when $v_i = \sigma^2 \; \forall i = 1, \dots, K$

	Background and Aims	Paper I 0000	Paper II 000●0	Paper III 00000	Paper IV 0000		
--	---------------------	-----------------	-------------------	--------------------	------------------	--	--

Paper II - Simulation study

Different scenario simulations ($R_b = 0.1, 0.5, 0.7; CV_{v_i} = 0.5, 1, 2; CV_B = 0.5, 1, 3; K = 5, 20, 50, 100$) https://alecri.shinyapps.io/bias/

00000000 0000 00000 00000 0000 0000 0	Background and Aims 00000000	Paper I 0000	Paper II 0000●	Paper III 00000	Paper IV 0000		
--	---------------------------------	-----------------	-------------------	--------------------	------------------	--	--

Paper II - Simulation results

No specific pattern in the bias for R_b according to CV_{v_i} and CV_B values

 I^2 and R_I overestimated the impact of heterogeneity

The coverage was good for confidence intervals based upon R_b

Bias and coverage for I^2 and R_I worsened as CV_{v_i} increased

Background and Aims	Paper I 0000	Paper II 00000	Paper III ●0000	Paper IV 0000	

Paper III

A Pointwise Approach to Dose–Response Meta–Analysis of Aggregated Data

Specific aims

- ► To introduce more flexibility in the dose-response analysis
- To allow each study to contribute to the overall curve based on the observed exposure distribution

Background and Aims	Paper I 0000	Paper II 00000	Paper III 0●000	Paper IV 0000	

Paper III

General limitations of a two-stage approach

- Common study-specific functional relationship (1st stage)
- Information on study-specific exposure range is not considered (2nd stage)

Consequences

- Poor fit in some of the study-specific dose-response analyses
- Risk of extrapolating predicted relative risks

A point-wise average approach may overcome those limitations

Background and Aims	Paper I	Paper II	Paper III	Paper IV	
			00000		

Paper III - Point-wise average approach

It consists of

- Estimating study-specific dose-response curves
- Predicting study-specific effects (RRs) for a grid of exposure values
- Combining study-specific effects

Advantages

- The dose-response analyses may vary across studies
- RR predictions can be limited to study-specific exposure ranges

 Background and Aims
 Paper I
 Paper II
 Paper III
 Paper IV
 Summary
 References

 00000000
 0000
 000●0
 0000
 0000
 000
 000

Paper III - Comparison with IPD meta-analysis

Based on breast cancer patients in the SEER program (http://seer.cancer.gov/)

Background and Aims 00000000	Paper I 0000	Paper II 00000	Paper III 0000●	Paper IV 0000	

Paper III - Comparison with two-stage meta-analysis

Re-analysis of a dose-response meta-analysis between milk and mortality

Background and Aims	Paper I 0000	Paper II 00000	Paper III 00000	Paper IV ●000	
Paper IV					

One-Stage Dose-Response Meta-Analysis of Aggregated Data

Specific aim

 To describe and implement a one-stage approach for dose-response meta-analysis of aggregated data

Background and Aims 00000000	Paper I 0000	Paper II 00000	Paper III 00000	Paper IV 0●00	

Paper IV

A one-stage procedure for random–effects meta–analysis of aggregated dose–response data

- Conceptually easier
- Avoid exclusion of studies with small observations
- More complex curves
- Interaction analysis

Background and Aims 00000000	Paper I 0000	Paper II 00000	Paper III 00000	Paper IV 00●0	

Paper IV – One-stage approach

Conditional meta-regression model

$$\mathbf{y}_{i} = \mathbf{X}_{i}\boldsymbol{\beta} + (\mathbf{X}_{i} \otimes \mathbf{Z}_{i}) \boldsymbol{\gamma} + \mathbf{X}_{i}\boldsymbol{\eta}_{i} + \boldsymbol{\varepsilon}_{i} \\ (n \times p)(p \times 1) + (n \times p)(p \times 1) + (n \times p)(p \times 1) + \boldsymbol{\varepsilon}_{n \times 1}$$
(5)

Distributional assumptions

 $egin{aligned} arepsilon_i &\sim \mathcal{N}_n\left(\mathbf{0}, \mathbf{\Sigma}_i
ight) \ m{\eta}_i &\sim \mathcal{N}_p\left(\mathbf{0}, \mathbf{\Psi}
ight) \end{aligned}$

Marginal model

$$\mathbf{Y}_{i} \sim N_{n} \left(\mathbf{X}_{i} \boldsymbol{\beta} + \left(\mathbf{X}_{i} \otimes \mathbf{Z}_{i} \right) \boldsymbol{\gamma}, \ \mathbf{\Sigma}_{i} + \mathbf{X}_{i} \mathbf{\Psi} \mathbf{X}_{i}^{\top} \right)$$
(6)

Background and Aims 00000000	Paper I 0000	Paper II 00000	Paper III 00000	Paper IV 000●	

Paper IV

Software implementation is almost complete (https://github.com/alecri/dosresmeta)

If the study-specific dose-response models are identifiable, the oneand two-stage approaches are equivalent

Advantages and limitations will be explored re-analyzing meta-analyses (presenting heterogeneity and meta-regression)

Background and Aims	Paper I	Paper II	Paper III	Paper IV	Summary	
00000000	0000	00000	00000	0000	●	

Summary

- Use of the goodness of fit tools can improve practice of quantitative reviews
- ► The proposed measure of heterogeneity, *R_b*, can facilitate quantification of the impact of heterogeneity
- The point-wise approach is a flexible tool to evaluate the impact of heterogeneous exposure distributions
- A one-stage meta-analysis will avoid exclusion of studies with limited number of RRs and allow more flexibility in meta-regression models

Background and Aims	Paper I	Paper II	Paper III	Paper IV	References
00000000	0000	00000	00000	0000	●●

References I

 Sander Greenland and Matthew P Longnecker. Methods for trend estimation from summarized dose-response data, with applications to meta-analysis. *American journal of epidemiology*, 135(11):1301–1309, 1992.

[2] Nicola Orsini, Ruifeng Li, Alicja Wolk, Polyna Khudyakov, and Donna Spiegelman.

Meta-analysis for linear and nonlinear dose-response relations: Examples, an evaluation of approximations, and software.

American journal of epidemiology, 175(1):66-73, 2012.

- [3] Jesse A Berlin, Matthew P Longnecker, and Sander Greenland. Meta-analysis of epidemiologic dose-response data. *Epidemiology*, 4(3):218–228, 1993.
- [4] A. Gasparrini, B. Armstrong, and M. G. Kenward. Multivariate meta-analysis for non-linear and other multi-parameter associations. *Statistics in Medicine*, 31(29):3821–3839, 2012.
- [5] Vincenzo Bagnardi, Antonella Zambon, Piero Quatto, and Giovanni Corrao. Flexible meta-regression functions for modeling aggregate dose-response data, with an application to alcohol and mortality.

American Journal of Epidemiology, 159(11):1077-1086, 2004.

Background and Aims			References
			••

References II

- [6] Qin Liu, Nancy R Cook, Anna Bergström, and Chung-Cheng Hsieh.
 A two-stage hierarchical regression model for meta-analysis of epidemiologic nonlinear dose-response data. Computational Statistics & Data Analysis, 53(12):4157–4167, 2009.
- Jian Qing Shi and JB Copas. Meta-analysis for trend estimation. Statistics in medicine, 23(1):3–19, 2004.
- [8] Willi Sauerbrei and Patrick Royston.

A new strategy for meta-analysis of continuous covariates in observational studies. *Statistics in medicine*, 30(28):3341–3360, 2011.