

Avoid exclusion of studies in synthesis of dose-response data using a novel one-stage approach

European Public Health Conference

Alessio Crippa, Nicola Orisini

November 2nd 2017

Dose-response meta-analysis

Summarize results from multiple studies on the relation between a quantitive exposure (e.g. diet or physical activity) and the occurrence of a health outcome (e.g. cancer or mortality)

Research questions

- What is the shape of the association between the quantitative exposure and the outcome?
- What are the exposure values associated with the best or worst outcome?
- ► How heterogenous are the individual dose-response curves?

Background and Aims		Conclusions	
0000			

Aggregated data

id	exposure category	dose	cases	n	OR (95% CI)
1	[-0.00336,3.5)	2.43	42	2260	1 (ref)
1	[3.5,7.01]	5.21	102	6136	0.89 (0.62, 1.28)
2	[-2.39,2.73)	1.70	39	651	1 (ref)
2	[2.73,7.83)	5.14	164	3962	0.68 (0.47, 0.97)
2	[7.83,12.9]	8.78	26	387	1.13 (0.68, 1.89)
3	[-2.14,1.64)	0.78	11	224	1 (ref)
3	[1.64,5.41)	3.89	99	2639	0.75 (0.4, 1.43)

Common practice in statistical analysis

Two-stage analysis:

- Define and estimate a common dose-response model in each *i*-th study: y_i = Xβ_i + ε_i
- **2** Combine study-specific β_i using meta-analysis.

To investigate non-linear functions, studies with less than 3 exposure categories are excluded.

Background and Aims		Conclusions	
0000			

Aims

- Develop a one-stage method to avoid exlcusion of studies.
- Describe the new methodology and compare with a two-stage analysis.
- Implement the one-stage approach in most common statistical software.

One stage approach

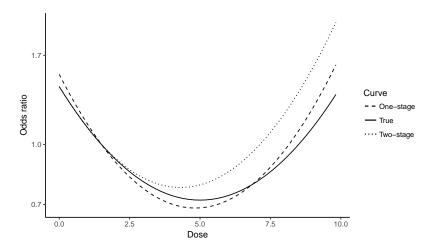
A one-stage model for meta-analysis of aggregated dose-response data can be written in the general form of a linear mixed model

$$\mathbf{y}_i = \mathbf{X}_i \boldsymbol{\beta} + \mathbf{Z}_i \mathbf{b}_i + \boldsymbol{\epsilon}_i \tag{1}$$

 \mathbf{y}_i vector of non-referent log RRs in the *i*-th study \mathbf{X}_i contains the assigned doses (and/or transformations)

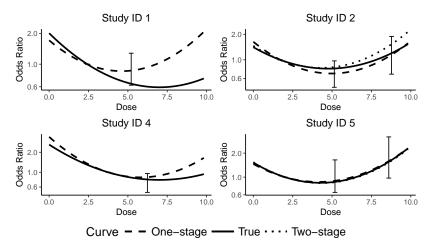
- Model without intercept
- $\operatorname{Cov}(\varepsilon_i) = \mathbf{\Sigma}_i$ can be approximated

Background and Aims 0000	Methods ○●	Conclusions O	


Main features

The mixed-models theory offers a good framework for several specific aspects

- inferential procedures (test if is there any dose-response association)
- predictions (predict the mean and individual curves)
- model comparison (which model best fits the data?)
- goodness-of-fit assessment (is there any evidence of lack of fit?)


Background and Aims	Results ●0	Conclusions O	

Comparison

Background and Aims 0000	Results ⊙●	Conclusions O	

BLUP

Background and Aims 0000		Conclusions •	

Conclusions

- We introduced a one-stage approach for dose-response meta-analysis.
- It avoides exclusion of valuable data.
- It facilitates many aspects of a dose-response mete-analysis
- We have implented in the dosresmeta R package and in the drmeta Stata command.

Background and Aims 0000		Conclusions O	References ●

References

- Greenland S, Longnecker MP (1992). Methods for trend estimation from summarized dose- response data, with applications to meta-analysis. American Journal of Epidemiology, 135(11): 1301–1309.
- Orsini N, Li R, Wolk A, Khudyakov P, Spiegelman D (2012). Meta-analysis for linear and nonlinear dose-response relations: examples, an evaluation of approximations, and software. American journal of epidemiology, 175(1):66–73.
- Crippa A, Orsini N (2016). Multivariate dose–response meta-analysis: the dosresmeta R package. Journal of Statistical Software, Code Snippets, 72(1), 1-15. doi:10.18637/jss.v072.c01
- Discacciati A, Crippa A, Orsini N (2015). Goodness of fit tools for dose–response meta-analysis of binary outcomes. Research synthesis methods.