Introduction	A measure of GOF	Examples	Conclusion

Goodness of fit in dose-response meta-analysis

Alessio Crippa¹ Nicola Orsini¹

¹Institute of Environmental Medicine, Karolinska Institutet

Epi-Seminar 26th September 2013

Crippa A., Orsini N.

Institute of Environmental Medicine, KI

Introduction	Estimation 00000	A measure of GOF	Examples ooooooooo	Conclusion

Contents

Introduction

Estimation

A measure of GOF

Practical Examples

Conclusion

Crippa A., Orsini N.

Institute of Environmental Medicine, KI

Introduction	Estimation 00000	A measure of GOF	Examples 00000000	Conclusion

Outline

Introduction

Estimation

A measure of GOF

Practical Examples

Conclusion

Crippa A., Orsini N.

Institute of Environmental Medicine, KI

Introduction	A measure of GOF	Examples	Conclusion
00000			

Meta-Analysis

- Increasing number of scientific publishing.
- Systematical literature review supported by statistical methods.
- Main goal: aggregate and contrast findings from several studies.
- Weighted average of common measure of effect size, with weights related to the precision of the estimates

Introduction ○●○○○	Estimation 00000	A measure of GOF	Examples ooooooooo	Conclusion

Dose-Response Meta-Analysis

- Specific type of meta-analysis
- Analyze summarized published data, where the exposure is usually categorized and the results (effect size) presented in a tabular way

 Table: Case-control data on alcohol and breast cancer risk (Rohan and Michael 1988)

gday	dose	case	n	adjrr	lb	ub
Ref.	0	165	337	1.00	1.00	1.00
<2.5	2	74	167	0.80	0.51	1.27
2.5-9.3	6	90	186	1.16	0.73	1.85
>9.3	11	122	212	1.57	0.99	2.51

Crippa A., Orsini N.

Institute of Environmental Medicine, KI

Introduction ○●○○○	Estimation 00000	A measure of GOF	Examples ooooooooo	Conclusion

Dose-Response Meta-Analysis

- Specific type of meta-analysis
- Analyze summarized published data, where the exposure is usually categorized and the results (effect size) presented in a tabular way

 Table: Case-control data on alcohol and breast cancer risk (Rohan and Michael 1988)

gday	dose	case	n	adjrr	lb	ub
Ref.	0	165	337	1.00	1.00	1.00
<2.5	2	74	167	0.80	0.51	1.27
2.5-9.3	6	90	186	1.16	0.73	1.85
>9.3	11	122	212	1.57	0.99	2.51

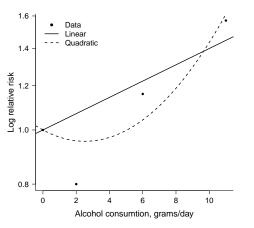
Crippa A., Orsini N.

Institute of Environmental Medicine, KI

Introduction ○●○○○	Estimation 00000	A measure of GOF	Examples ooooooooo	Conclusion

Dose-Response Meta-Analysis

- Specific type of meta-analysis
- Analyze summarized published data, where the exposure is usually categorized and the results (effect size) presented in a tabular way

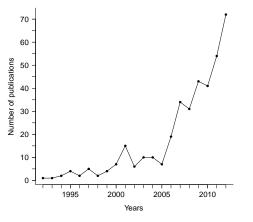

 Table: Case-control data on alcohol and breast cancer risk (Rohan and Michael 1988)

gday	dose	case	n	adjrr	lb	ub
Ref.	0	165	337	1.00	1.00	1.00
<2.5	2	74	167	0.80	0.51	1.27
2.5-9.3	6	90	186	1.16	0.73	1.85
>9.3	11	122	212	1.57	0.99	2.51

Crippa A., Orsini N.

Institute of Environmental Medicine, KI

Introduction	Estimation 00000	A measure of GOF	Examples 00000000	Conclusion



- Define a dose-response function for a single study
- Combine trends from several studies
- Method formalized by Greenland and Longnecker (1992)
- Number of dose-response meta-analyses increased exponentially

Crippa A., Orsini N.

Institute of Environmental Medicine, KI

Introduction ○○○●○	Estimation 00000	A measure of GOF	Examples 00000000	Conclusion

- Procedure developed in Stata (glst command) by Orsini (2006)
- 42 in the first 4 months of 2013 (2 every week)
- 26 (60%) estimated linear trend
- Only 17 (40%) investigated non-linearity and provided a graphical presentation

Crippa A., Orsini N.

Institute of Environmental Medicine, KI

Introduction oooo●	Estimation 00000	A measure of GOF	Examples ooooooooo	Conclusion

- None overlaid the observed data points and the summary exposure-disease association
- Define the degree of consistency of prior knowledge around a pooled trend

Aims

- Describe how to estimate dose-response association
- Clarify how observed and fitted relative risks can be compared
- Propose a measure of goodness of fit
- Implement the proposed method in an R package

Introduction	Estimation	A measure of GOF	Examples ooooooooo	Conclusion

Outline

Introduction

Estimation

A measure of GOF

Practical Examples

Conclusion

Crippa A., Orsini N.

Institute of Environmental Medicine, KI

Introduction	Estimation ●0000	A measure of GOF	Examples ooooooooo	Conclusion

Estimate a pooled dose-response relation

Two stage procedure:

First stage

Define and estimate the dose-response association for the *j*-th study, j = 1, ..., m (linear, polynomials, splines):

Second stage

Combine these estimates to obtain an overall pooled dose-response association.

Crippa A., Orsini N.

Institute of Environmental Medicine, KI

Introduction	Estimation o●ooo	A measure of GOF	Examples 00000000	Conclusion

Model definition

Log linear model for a single study (linear trend):

$$y_i = \beta_1 X_i + \epsilon_i \tag{1}$$

where y_i are the log of non referent relative risks, X_i the corresponding levels of exposure (x = 0 correspond to the reference category).

NB: The model in equation (1) has no intercept: the log relative risk for the referent exposure is set equal to 0 (RR=1).

Crippa A., Orsini N.

Institute of Environmental Medicine, KI

Introduction 00000	Estimation 00000	A measure of GOF	Examples 00000000	Conclusion

GLS estimation

 ϵ_i are not independent, $Cov(\epsilon_i) = \Sigma$

 $\boldsymbol{\Sigma}$ can be estimated from the published data.

 β can be efficiently estimated by gls:

$$\hat{\beta} = (\mathbf{X}' \Sigma \mathbf{X})^{-1} \mathbf{X}' \Sigma^{-1} \mathbf{y}$$
(2)

$$\mathbf{V} = Cov(\hat{\beta}) = (\mathbf{X}' \Sigma \mathbf{X})^{-1}$$
(3)

Crippa A., Orsini N.

Institute of Environmental Medicine, KI

Introduction	Estimation ooo●o	A measure of GOF	Examples 00000000	Conclusion

Second stage

Let consider *m* studies.

Aim: pooling of $\hat{\beta} = \left[\hat{\beta}_1, \dots, \hat{\beta}_m\right]$ Multivariate random-effect meta-analysis:

$$\hat{\beta}_j \sim N_{\rho}(\beta, V_j + \psi)$$
 (4)

Different methods for estimation: (full) maximum likelihood, restricted maximum likelihood or methods of moments

Crippa A., Orsini N.

Institute of Environmental Medicine, KI

00000 OC	000		

Fit statistics

Assess and quantify heterogeneity (second stage analysis):

$$Q = \sum_{j=1}^{m} \left[(\beta_j - \hat{\beta}_f)' V_j^{-1} (\beta_j - \hat{\beta}_f) \right]$$
(5)

$$l^2 = \frac{Q - df}{Q} \tag{6}$$

Information Criteria, such as

$$AIC = -2I(\hat{\beta}, \hat{\psi}) + 2p \tag{7}$$

Crippa A., Orsini N.

Institute of Environmental Medicine, KI

Introduction	Estimation 00000	A measure of GOF	Examples 00000000	Conclusion

Outline

Introduction

Estimation

A measure of GOF

Practical Examples

Conclusion

Crippa A., Orsini N.

Institute of Environmental Medicine, KI

Introduction		A measure of GOF	Examples	Conclusion
00000	00000	00000000	00000000	000

Motivating example

Table: Case-control data on alcohol and breast cancer risk (Rohan and Michael 1988)

gday	dose	case	control	n	crudeor	adjrr	lb	ub
Ref.	0	165	172	337	1.00	1.00	1.00	1.00
<2.5	2	74	93	167	0.83	0.80	0.51	1.27
2.5-9.3	6	90	96	186	0.98	1.16	0.73	1.85
>9.3	11	122	90	212	1.41	1.57	0.99	2.51

Linear trend:

$$log(adjrr) = \beta_1 X_i + \epsilon_i$$

Crippa A., Orsini N.

Institute of Environmental Medicine, KI

Introduction	Estimation 00000	A measure of GOF o●ooooooo	Examples 00000000	Conclusion

Crippa A., Orsini N.

Introduction	Estimation 00000	A measure of GOF	Examples 00000000	Conclusion
	1			



Figure: Comparison between corrected and uncorrected prediction

Crippa A., Orsini N.

Institute of Environmental Medicine, KI

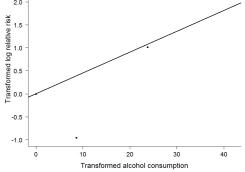
Introduction	A measure of GOF	Examples	Conclusion
	0000000		

De-correlate data points: a single study

Consider *y*, **X** and Σ : **L** is the Cholesky decomposition of Σ , $\Sigma = LL'$

$$y^* = \mathbf{L}^{-1} y$$
$$\mathbf{X}^* = \mathbf{L}^{-1} \mathbf{X}$$
(8)

Model in equation (1) can be re-formulated as:


$$\mathbf{y}^* = \mathbf{X}^* \beta^* + \epsilon^* \tag{9}$$

NB: Parameter estimates do not change: $\hat{\beta}^* = \hat{\beta}$

Crippa A., Orsini N.

Institute of Environmental Medicine, KI

Introduction 00000	Estimation 00000	A measure of GOF oooo●oooo	Examples oooooooooo	Conclusion 000
	2.5 - 2.0 - <u>¥</u> 1.5 -			

Figure: Data points and fitted trend corrected for covariance of log relative risks, based on decorralate data

Crippa A., Orsini N.

Introduction	A measure of GOF	Examples	Conclusion
	000000000		

De-correlate data points: several studies

Consider *m* studies: First decorrelate observations in each study (eq. 8) Pool data by concatenating y_i^* and \mathbf{X}_i^* :

$$\mathbf{y}^* = \begin{bmatrix} \mathbf{y}_1^* \\ \vdots \\ \mathbf{y}_j^* \\ \vdots \\ \mathbf{y}_m^* \end{bmatrix} \quad \mathbf{X}^* = \begin{bmatrix} \mathbf{X}_1^* \\ \vdots \\ \mathbf{X}_j^* \\ \vdots \\ \mathbf{X}_m^* \end{bmatrix}$$

Crippa A., Orsini N.

Institute of Environmental Medicine, KI

Introduction	Estimation 00000	A measure of GOF ○○○○○○●○○	Examples 00000000	Conclusion

A measure of goodness of fit

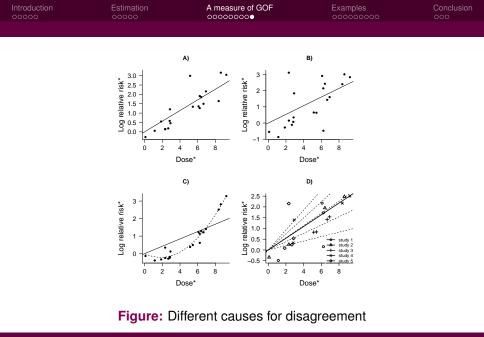
(fixed effect) model in eq. 4 can be re-formulated as:

$$\mathbf{y}^* = \mathbf{X}^* \beta^* + \epsilon^* \tag{10}$$

 R^2 can be adopted to assess the fit of the analysis:

$$R^{2} = 1 - \frac{\sum_{j=1}^{S} \sum_{i=1}^{n_{j}} (y_{ij}^{*} - \mathbf{X}_{ij}^{*}\beta)^{2}}{\sum_{j=1}^{S} \sum_{i=1}^{n_{j}} y_{ij}^{*2}}$$
(11)

where β is estimated from the fixed effect model in eq. 4.


Crippa A., Orsini N.

Institute of Environmental Medicine, KI

Introduction	Estimation 00000	A measure of GOF oooooooooo	Examples 00000000	Conclusion

Properties

- Well known measure of goodness of fit in traditional context
- Simple computation
- Based on all data points
- Simple and intuitive interpretation
- Unit-less measure, range: [0,1]
- Evaluate the agreement low, moderate, considerable and high to R² in the range of [0,25], (25,50],(50,75] and (75,100]

Crippa A., Orsini N.

Institute of Environmental Medicine, KI

Introduction	Estimation	A measure of GOF	Examples	Conclusion

Outline

Introduction

Estimation

A measure of GOF

Practical Examples

Conclusion

Crippa A., Orsini N.

Institute of Environmental Medicine, KI

Introduction	A measure of GOF	Examples	Conclusion
		0000000	

Body Mass Index and renal cell cancer risk

 R^2 can help to compare the fit of different analyses:

Linear Trend

$$log(RR_{ij}) = \beta_{1j}X_{ij} + \epsilon_{ij}$$
(12)

Non-linear relation (restricted cubic spline)

$$log(RR_{ij}) = \beta_{1j}X_{1ij} + \beta_{2j}X_{2ij} + \epsilon_{ij}$$
(13)

Institute of Environmental Medicine, KI

Crippa A., Orsini N.

Introduction	A measure of GOF	Examples	Conclusion
		00000000	

Estimate	Parameter	Estimate	Std. Error	Z	Pr(> z)
Linear	β_1	0.076	0.013	5.6	< 0.001
Non-linear	β_1	0.038	<0.001	1.6	0.100
	β_2	0.056	0.033	1.7	0.084

Table: Fit statistics for linear and non-linear dose-response fordose-response meta-analysis of BMI and renal cancer risk

	Q	<i>p</i> -value	l ²	R^2
Linear	14.1	0.049	50	67
Non-linear	22.4	0.071	37	70

Crippa A., Orsini N.

Institute of Environmental Medicine, KI

Introduction	A measure of GOF	Examples	Conclusion
		00000000	

Estimate	Parameter	Estimate	Std. Error	Z	Pr(> z)
Linear	β_1	0.076	0.013	5.6	< 0.001
Non-linear	β_1	0.038	<0.001	1.6	0.100
	β_2	0.056	0.033	1.7	0.084

Table: Fit statistics for linear and non-linear dose-response fordose-response meta-analysis of BMI and renal cancer risk

	Q	<i>p</i> -value	l ²	R^2
Linear	14.1	0.049	50	67
Non-linear	22.4	0.071	37	70

Crippa A., Orsini N.

Institute of Environmental Medicine, KI

Introduction	A measure of GOF	Examples	Conclusion
		00000000	

Estimate	Parameter	Estimate	Std. Error	Z	Pr(> z)
Linear	β_1	0.076	0.013	5.6	< 0.001
Non-linear	β_1	0.038	<0.001	1.6	0.100
	β_2	0.056	0.033	1.7	0.084

Table: Fit statistics for linear and non-linear dose-response fordose-response meta-analysis of BMI and renal cancer risk

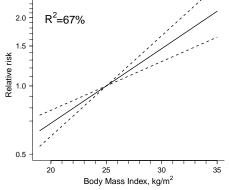
	Q	<i>p</i> -value	l ²	R^2
Linear	14.1	0.049	50	67
Non-linear	22.4	0.071	37	70

Crippa A., Orsini N.

Institute of Environmental Medicine, KI

Introduction	A measure of GOF	Examples	Conclusion
		00000000	

Estimate	Parameter	Estimate	Std. Error	Z	Pr(> z)
Linear	β_1	0.076	0.013	5.6	< 0.001
Non-linear	β_1	0.038	<0.001	1.6	0.100
	β_2	0.056	0.033	1.7	0.084


Table: Fit statistics for linear and non-linear dose-response fordose-response meta-analysis of BMI and renal cancer risk

	Q	<i>p</i> -value	l ²	R^2
Linear	14.1	0.049	50	67
Non-linear	22.4	0.071	37	70

Crippa A., Orsini N.

Institute of Environmental Medicine, KI

Introduction	Estimation 00000	A measure of GOF	Examples oo●oooooo	Conclusion
	2.5 =		1	
	2.0			
	^{2.0} R ²	=67%	1	

Figure: Predicted dose-response association between BMI and risk of renal cell cancer

Crippa A., Orsini N.

Institute of Environmental Medicine, KI

Introduction	A measure of GOF	Examples	Conclusion
		00000000	

Alcohol intake and colorectal cancer

 R^2 may warn about lack of fit even if Q statistic and I^2 do not reveal any problems.

We compare two analyses:

Linear trend

$$log(RR_{ij}) = \beta_j X_{ij} + \epsilon_{ij}$$
(14)

Non-linear relation (restricted cubic spline):

$$log(RR_{ij}) = \beta_{1j}X_{1ij} + \beta_{2j}X_{2ij} + \epsilon_{ij}$$
(15)

Crippa A., Orsini N.

Institute of Environmental Medicine, KI

Introduction	A measure of GOF	Examples	Conclusion
		00000000	

Estimate	Parameter	Estimate	Std. Error	Z	Pr(> z)
Linear	β_1	0.006	0.001	4.7	< 0.001
Non-linear	β_1	-0.001	<0.001	-0.3	0.800
	β_2	0.021	0.010	2.0	0.045

 Table: Fit statistics for linear and non-linear dose-response

 meta-analysis between alcohol intake and risk of colorectal cancer

	Q	<i>p</i> -value	<i>I</i> ²	R^2
Linear	4.7	0.702	0	32
Non-linear	14.2	0.432	2	38

Crippa A., Orsini N.

Institute of Environmental Medicine, KI

Introduction	A measure of GOF	Examples	Conclusion
		00000000	

Estimate	Parameter	Estimate	Std. Error	Z	Pr(> z)
Linear	β_1	0.006	0.001	4.7	< 0.001
Non-linear	β_1	-0.001	<0.001	-0.3	0.800
	β_2	0.021	0.010	2.0	0.045

 Table: Fit statistics for linear and non-linear dose-response

 meta-analysis between alcohol intake and risk of colorectal cancer

	Q	<i>p</i> -value	<i>I</i> ²	R^2
Linear	4.7	0.702	0	32
Non-linear	14.2	0.432	2	38

Crippa A., Orsini N.

Institute of Environmental Medicine, KI

Introduction	A measure of GOF	Examples	Conclusion
		00000000	

Estimate	Parameter	Estimate	Std. Error	Z	Pr(> z)
Linear	β_1	0.006	0.001	4.7	< 0.001
Non-linear	β_1	-0.001	<0.001	-0.3	0.800
	β_2	0.021	0.010	2.0	0.045

 Table: Fit statistics for linear and non-linear dose-response

 meta-analysis between alcohol intake and risk of colorectal cancer

	Q	<i>p</i> -value	l ²	R^2
Linear	4.7	0.702	0	32
Non-linear	14.2	0.432	2	38

Crippa A., Orsini N.

Institute of Environmental Medicine, KI

Introduction	A measure of GOF	Examples	Conclusion
		00000000	

Estimate	Parameter	Estimate	Std. Error	Z	Pr(> z)
Linear	β_1	0.006	0.001	4.7	< 0.001
Non-linear	β_1	-0.001	<0.001	-0.3	0.800
	β_2	0.021	0.010	2.0	0.045

 Table: Fit statistics for linear and non-linear dose-response

 meta-analysis between alcohol intake and risk of colorectal cancer

	Q	<i>p</i> -value	l ²	R^2
Linear	4.7	0.702	0	32
Non-linear	14.2	0.432	2	38

Crippa A., Orsini N.

Institute of Environmental Medicine, KI

Introduction	Estimation 00000	A measure of GOF	Examples ooooo●ooo	Conclusion
	10.0 -		•	
	5.0 -		·.	
	Transformed Relative risk	· · · · ·		
	• - 0.1 Kelat	· · · · ·		
	90 40 50 50 50 50 50 50 50 50 50 50 50 50 50	• •		
	•	•		
	0.2 - •			

Figure: Predicted dose-response relation based on decorrelate data for dose-response meta-analysis between alcohol intake and colorectal cancer

Transformed Alcohol intake

100

150

200

250

Crippa A., Orsini N.

GOF in dose-response meta-analysis

0.1 -

50

Introduction	A measure of GOF	Examples	Conclusion
		00000000	

Alcohol consumption and risk of esophageal cancer

 R^2 provides a different information from the usual fit statistics.

Fractional Polynomials:

$$log(RR_{ij}) = \beta_j X_{ij} + \beta_2 X_{ij} \log(X_{ij}) + \epsilon_{ij}$$
(16)

Restricted cubic spline:

$$log(RR_{ij}) = \beta_{1j}X_{1ij} + \beta_{2j}X_{2ij} + \epsilon_{ij}$$
(17)

Crippa A., Orsini N.

Institute of Environmental Medicine, KI

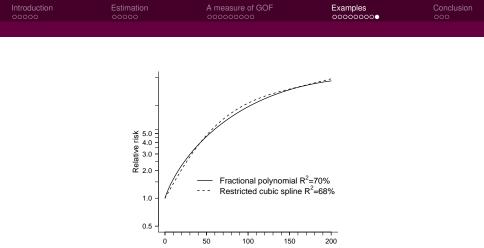

Introduction	Estimation 00000	A measure of GOF	Examples ○○○○○○●○	Conclusion

Table: Fit statistics for fractional polynomial and spline analysis in dose-response meta-analysis between alcohol and esophageal cancer

	R^2	AIC
Fractional Polynomial	70	-115.5
Spline	68	-44.9

- AIC tells us which one is better
- R^2 evaluates how much the fit differ

Crippa A., Orsini N.

Alcohol consumption, grams/day

Figure: Predicted dose-response relations based on fractional polynomial and restricted cubic spline models for dose-response meta-analysis between alcohol and esophageal cancer

Crippa A., Orsini N.

Introduction 00000	Estimation 00000	A measure of GOF	Examples 00000000	Conclusion

Outline

Introduction

Estimation

A measure of GOF

Practical Examples

Conclusion

Crippa A., Orsini N.

Institute of Environmental Medicine, KI

Introduction	Estimation 00000	A measure of GOF	Examples 00000000	Conclusion ●○○

Conclusion

- Increasing number of published dose-response meta-analyses
- ► Fit statistics refer to statistical heterogeneity
- No measure of agreement between observed and modeled data

Strengths

- A possible graphical comparison
- R² as summary measure of agreement
- Improve the current practice
- dosresmeta R package available at http://cran.r-project.org/

Crippa A., Orsini N.

Introduction		A measure of GOF	Examples	Conclusion
00000	00000	00000000	000000000	000

Further investigations

- sensitivity analysis related to influential points;
- analysis of potential bias;
- development of robust methods;
- modeling risk instead of relative risk;
- including time dimension;
- improvements in the "dosresmeta" R package

Crippa A., Orsini N.

Institute of Environmental Medicine, KI

roduction	A measure of GOF	Examples	Conclusion
			000

Thank you!

Supervisors: Nicola Orsini Vincenzo Bagnardi **Rino Bellocco** Matteo Bottai Alicja Wolk

Alessio Crippa Unit of Nutritional Epidemiology

Institute of Environmental Medicine Karolinska Institutet

Crippa A., Orsini N.

Institute of Environmental Medicine, KI