Alessio Crippa¹ Nicola Orsini¹

¹Institute of Environmental Medicine, Karolinska Institutet

4th Nordic-Baltic Biometric Conference, Stockholm

Contents

Introduction

Estimation

A measure of GOF

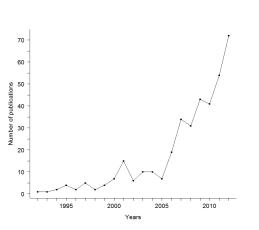
Practical Examples

Conclusion

Introduction •00

Dose-response meta-analysis

- Specific type of meta-analysis
- Define an overall trend from summarized data, where the exposure is categorized and the results presented in a tabular way
- Method first formalized by Greenland and Longnecker (1992)



- Number of published dose-response meta-analyses increases exponentially
- 42 in the first 4 months of 2013 (2 every week)
- ▶ 26 (60%) estimated linear trend
- Only 17 (40%) investigated non-linearity and provided a graphical presentation
- ➤ 39 (93%) assessed heterogeneity

Introduction

000

Introduction

- None overlaid the observed data points and the summary exposure-disease trend
- Define the degree of consistency of prior knowledge around a summary or pooled trend

Aims

- Describe how to estimate dose-response relation
- Clarify how observed and fitted relative risks can be compared
- Propose a measure of goodness of fit

Two stage procedure:

First stage

Introduction

Define and estimate the dose-response association for each study j (linear, fractional polynomial, splines): p-th vector of estimates β_j and accompanying $p \times p$ estimated covariance matrix \mathbf{V}_j

Second stage

Combine these estimates to obtain an overall measure of association

Introduction

Log linear model for a single study (linear trend):

$$y_i = \beta_1 X_i + \epsilon_i \tag{1}$$

where y_i are the log of non referent relative risks, X_i the corresponding levels of exposure (x = 0 correspond to the reference category).

NB: The model in equation (1) has no intercept: the log relative risk for the referent exposure is set equal to 0 (RR=1).

GLS estimation

 ϵ_i are not independent, $Cov(\epsilon_i) = \Sigma$ Σ can be estimated from the published data.

 β can be efficiently estimated by gls:

$$\hat{\beta} = (\mathbf{X}'\Sigma\mathbf{X})^{-1}\mathbf{X}'\Sigma^{-1}\mathbf{y} \tag{2}$$

$$\mathbf{V} = Cov(\hat{\beta}) = (\mathbf{X}'\Sigma\mathbf{X})^{-1}$$
 (3)

Second stage

Introduction

Pool the estimates from the first stage: $\hat{\beta} = \left[\hat{\beta}_1, \dots \hat{\beta}_S\right]$ Multivariate random-effect meta-analysis:

$$\hat{\beta}_{j} \sim N_{p}(\beta, V_{j} + \psi) \tag{4}$$

Different methods for estimation: (full) maximum likelihood, restricted maximum likelihood or methods of moments

Fit statistics

To assess and quantify presence of heterogeneity (second stage analysis):

$$Q = \sum_{j=1}^{S} \left[(\beta_j - \hat{\beta})' V_j^{-1} (\beta_j - \hat{\beta}) \right]$$
 (5)

▶

$$I^2 = \frac{Q - df}{Q} \tag{6}$$

► Information Criteria, such as

$$AIC = -2I(\hat{\beta}, \hat{\psi}) + 2p \tag{7}$$

Motivating example

Table: Case-control data on alcohol and breast cancer risk (Rohan and Michael 1988)

gday	dose	case	control	n	crudeor	adjrr	lb	ub
Ref.	0	165	172	337	1.00	1.00	1.00	1.00
<2.5	2	74	93	167	0.83	0.80	0.51	1.27
2.5-9	.3 6	90	96	186	0.98	1.16	0.73	1.85
_>9.3	11	122	90	212	1.41	1.57	0.99	2.51

Linear trend:

$$log(adjrr) = \beta_1 X_i + \epsilon_i$$

```
library(dosresmeta)
data(cc ex)
mod <- dosresmeta(formula = logrr~0 + dose, study="cc",
           cov =c(case, n), se=c(log1b, logub), data=cc_ex)
mod$Param
 id Estimate Std. Error z value Pr(>z)
1 1 dose 0.046 0.02051 2.24 0.025
mod$fit.stat
 id Q Pr(>chi2) log ll
1 1 1.93 0.382 0.790
```

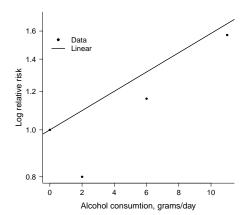


Figure: Comparison between corrected and uncorrected prediction

Consider y, **X** and Σ :

L is the Cholesky decomposition of Σ , $\Sigma = \mathbf{L}\mathbf{L}'$

$$y^* = \mathbf{L}^{-1} y$$

$$\mathbf{X}^* = \mathbf{L}^{-1} \mathbf{X}$$
(8)

Model in equation (1) can be re-formulated as:

$$\mathbf{y}^* = \mathbf{X}^* \beta^* + \epsilon^* \tag{9}$$

NB: Parameter estimates do not change: $\hat{\beta}^* = \hat{\beta}$

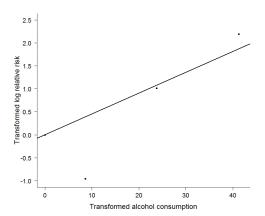


Figure : Data points and fitted trend corrected for covariance of log relative risks, based on decorralate data

Consider *m* studies:

First decorrelate observations in each study (eq. 8)

Pool data by concatenating y_i^* and \mathbf{X}_i^* :

$$y^* = \begin{bmatrix} y_1^* \\ \vdots \\ y_j^* \\ \vdots \\ y_m^* \end{bmatrix} \quad \mathbf{X}^* = \begin{bmatrix} \mathbf{X}_1^* \\ \vdots \\ \mathbf{X}_j^* \\ \vdots \\ \mathbf{X}_m^* \end{bmatrix}$$

Introduction

A measure of goodness of fit

(fixed effect) model in eq. 4 can be re-formulated as:

$$\mathbf{y}^* = \mathbf{X}^* \boldsymbol{\beta}^* + \boldsymbol{\epsilon}^* \tag{10}$$

 R^2 can be adopted to assess the fit of the analysis:

$$R^{2} = 1 - \frac{\sum_{j=1}^{S} \sum_{i=1}^{n_{j}} (y_{ij}^{*} - \mathbf{X}_{ij}^{*} \beta)^{2}}{\sum_{j=1}^{S} \sum_{i=1}^{n_{j}} y_{ij}^{*2}}$$
(11)

where β is estimated from the fixed effect model in eq. 4.

Properties

- Well known measure of goodness of fit in traditional context
- Simple computation
- Based on all data points
- Simple and intuitive interpretation
- Unit-less measure, range: [0,1]
- ► Evaluate the agreement low, moderate, considerable and high to R² in the range of [0,25], (25,50],(50,75] and (75,100]

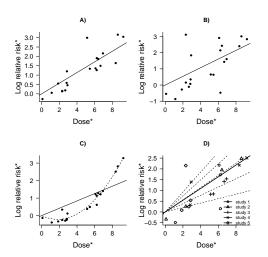


Figure: Different causes for disagreement

 R^2 can help to compare the fit of different analyses:

Linear Trend

$$log(RR_{ij}) = \beta_{1j}X_{ij} + \epsilon_{ij}$$
 (12)

Non-linear relation (restricted cubic spline)

$$log(RR_{ij}) = \beta_{1j} X_{1ij} + \beta_{2j} X_{2ij} + \epsilon_{ij}$$
 (13)

Table: Estimated coefficients for linear and non-linear dose-response meta-analysis of BMI and renal cancer risk

Estimate	Parameter	Estimate	Std. Error	Z	Pr(> z)
Linear	β_1	0.076	0.013	5.6	< 0.001
Non-linear	$eta_{ extsf{1}}$	0.038	< 0.001	1.6	0.100
	eta_{2}	0.056	0.033	1.7	0.084

Table: Fit statistics for linear and non-linear dose-response for dose-response meta-analysis of BMI and renal cancer risk

	Q	<i>p</i> -value	<i>l</i> ²	R^2
Linear	14.1	0.049	50	67
Non-linear	22.4	0.071	37	70

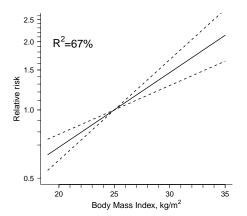


Figure : Predicted dose-response association between BMI and risk of renal cell cancer

Alcohol intake and colorectal cancer

 R^2 may warn about lack of fit even if Q statistic and I^2 do not reveal any problems.

We compare two analyses:

Linear trend

$$log(RR_{ij}) = \beta_j X_{ij} + \epsilon_{ij}$$
 (14)

Non-linear relation (restricted cubic spline):

$$log(RR_{ij}) = \beta_{1j}X_{1ij} + \beta_{2j}X_{2ij} + \epsilon_{ij}$$
 (15)

Table: Estimated coefficients for linear and non-linear dose-response meta-analysis of alcohol intake and risk of colorectal cancer

Estimate	Parameter	Estimate	Std. Error	Z	Pr(> z)
Linear	β_1	0.006	0.001	4.7	< 0.001
Non-linear	$eta_{ extsf{1}}$	-0.001	< 0.001	-0.3	0.800
	$eta_{f 2}$	0.021	0.010	2.0	0.045

Table : Fit statistics for linear and non-linear dose-response meta-analysis between alcohol intake and risk of colorectal cancer

	Q	<i>p</i> -value	<i>I</i> ²	R^2
Linear	4.7	0.702	0	32
Non-linear	14.2	0.432	2	38

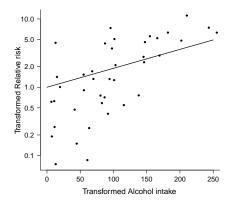


Figure : Predicted dose-response relation based on decorrelate data for dose-response meta-analysis between alcohol intake and colorectal cancer

Alcohol consumption and risk of esophageal cancer

 R^2 provides a different information from the usual fit statistics.

► Fractional Polynomials:

$$log(RR_{ij}) = \beta_j X_{ij} + \beta_2 X_{ij} \log(X_{ij}) + \epsilon_{ij}$$
 (16)

Restricted cubic spline:

$$log(RR_{ij}) = \beta_{1j}X_{1ij} + \beta_{2j}X_{2ij} + \epsilon_{ij}$$
 (17)

Table: Fit statistics for fractional polynomial and spline analysis in dose-response meta-analysis between alcohol and esophageal cancer

	R^2	AIC
Fractional Polynomial	70	-115.5
Spline	68	-44.9

- AIC tells us which one is better
- ► R² evaluates how much the fit differ

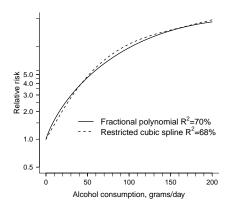


Figure : Predicted dose-response relations based on fractional polynomial and restricted cubic spline models for dose-response meta-analysis between alcohol and esophageal cancer

Conclusion

- Increasing number of published dose-response meta-analyses
- Fit statistics refer to statistical heterogeneity
- No measure of agreement between observed and modeled data

Strengths

- A possible graphical comparison
- R² as summary measure of agreement
- Improve the current practice
- dosresmeta R package available at

http://cran.r-project.org/

Further investigations

Introduction

- sensitivity analysis related to influential points;
- analysis of potential bias;
- development of robust methods;
- modeling risk instead of relative risk;
- including time dimension;
- improvements in the "dosresmeta" R package

Thank you!

Supervisors:
Nicola Orsini
Vincenzo Bagnardi
Rino Bellocco
Matteo Bottai
Alicja Wolk

Alessio Crippa
Unit of Nutritional Epidemiology
Institute of Environmental
Medicine
Karolinska Institutet