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Introduction

Dose-response meta-analysis

I Specific type of meta-analysis
I Define an overall trend from summarized data, where the

exposure is categorized and the results presented in a
tabular way

I Method first formalized by Greenland and Longnecker
(1992)
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I Number of published
dose-response
meta-analyses increases
exponentially

I 42 in the first 4 months of
2013 (2 every week)

I 26 (60%) estimated linear
trend

I Only 17 (40%) investigated
non-linearity and provided a
graphical presentation

I 39 (93%) assessed
heterogeneity
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I None overlaid the observed data points and the summary
exposure-disease trend

I Define the degree of consistency of prior knowledge
around a summary or pooled trend

Aims

I Describe how to estimate dose-response relation
I Clarify how observed and fitted relative risks can be

compared
I Propose a measure of goodness of fit
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Estimate dose-response relation

Two stage procedure:

First stage
Define and estimate the dose-response association for each
study j (linear, fractional polynomial, splines):
p-th vector of estimates βj and accompanying p × p estimated
covariance matrix Vj

Second stage
Combine these estimates to obtain an overall measure of
association
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Model definition

Log linear model for a single study (linear trend):

yi = β1Xi + εi (1)

where yi are the log of non referent relative risks, Xi the
corresponding levels of exposure (x = 0 correspond to the
reference category).

NB: The model in equation (1) has no intercept: the log relative
risk for the referent exposure is set equal to 0 (RR=1).
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GLS estimation

εi are not independent, Cov(εi) = Σ
Σ can be estimated from the published data.

β can be efficiently estimated by gls:

β̂ = (X′ΣX)−1X′Σ−1y (2)

V = Cov(β̂) = (X′ΣX)−1 (3)
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Second stage

Pool the estimates from the first stage: β̂ =
[
β̂1, . . . β̂S

]
Multivariate random-effect meta-analysis:

β̂j ∼ Np(β,Vj + ψ) (4)

Different methods for estimation: (full) maximum likelihood,
restricted maximum likelihood or methods of moments
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Fit statistics
To assess and quantify presence of heterogeneity (second
stage analysis):

I

Q =
S∑

j=1

[
(βj − β̂)′V−1

j (βj − β̂)
]

(5)

I

I2 =
Q − df

Q
(6)

I Information Criteria, such as

AIC = −2l(β̂, ψ̂) + 2p (7)
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Motivating example

Table : Case-control data on alcohol and breast cancer risk (Rohan
and Michael 1988)

gday dose case control n crudeor adjrr lb ub
Ref. 0 165 172 337 1.00 1.00 1.00 1.00
<2.5 2 74 93 167 0.83 0.80 0.51 1.27
2.5-9.3 6 90 96 186 0.98 1.16 0.73 1.85
>9.3 11 122 90 212 1.41 1.57 0.99 2.51

Linear trend:
log(adjrr) = β1Xi + εi
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library(dosresmeta)
data(cc_ex)

mod <- dosresmeta(formula = logrr~0 + dose, study="cc",
cov =c(case, n), se=c(loglb, logub), data=cc_ex)

mod$Param

id Estimate Std. Error z value Pr(>z)
1 1 dose 0.046 0.02051 2.24 0.025

mod$fit.stat

id Q Pr(>chi2) log ll
1 1 1.93 0.382 0.790
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Figure : Comparison between corrected and uncorrected prediction
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De-correlate data points: a single study

Consider y , X and Σ:
L is the Cholesky decomposition of Σ, Σ = LL′

y∗ = L−1y

X∗ = L−1X
(8)

Model in equation (1) can be re-formulated as:

y∗ = X∗β∗ + ε∗ (9)

NB: Parameter estimates do not change: β̂∗ = β̂
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Figure : Data points and fitted trend corrected for covariance of log
relative risks, based on decorralate data
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De-correlate data points: several studies

Consider m studies:
First decorrelate observations in each study (eq. 8)
Pool data by concatenating y∗j and X∗j :

y∗ =


y∗1
...

y∗j
...

y∗m

 X∗ =


X∗1
...

X∗j
...

X∗m


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A measure of goodness of fit

(fixed effect) model in eq. 4 can be re-formulated as:

y∗ = X∗β∗ + ε∗ (10)

R2 can be adopted to assess the fit of the analysis:

R2 = 1−
∑S

j=1
∑nj

i=1(y∗ij − X∗ijβ)2∑S
j=1

∑nj
i=1 y∗ij

2
(11)

where β is estimated from the fixed effect model in eq. 4.
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Properties

I Well known measure of goodness of fit in traditional context
I Simple computation
I Based on all data points
I Simple and intuitive interpretation
I Unit-less measure, range: [0,1]
I Evaluate the agreement low, moderate, considerable and

high to R2 in the range of [0,25], (25,50],(50,75] and
(75,100]
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Figure : Different causes for disagreement
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Body Mass Index and renal cell cancer risk

R2 can help to compare the fit of different analyses:

I Linear Trend
log(RRij) = β1jXij + εij (12)

dosresmeta(formula = logor~dose, study=c(id, studyt),
cov=c(case ,n), se=selogor, data=bmi_rc)

I Non-linear relation (restricted cubic spline)

log(RRij) = β1jX1ij + β2jX2ij + εij (13)

dosresmeta(formula = logor~dose+doses, study=c(id, studyt),
cov=c(case,n),se=selogor,data=bmi_rc)
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Table : Estimated coefficients for linear and non-linear
dose-response meta-analysis of BMI and renal cancer risk

Estimate Parameter Estimate Std. Error z Pr(>|z|)
Linear β1 0.076 0.013 5.6 <0.001
Non-linear β1 0.038 <0.001 1.6 0.100

β2 0.056 0.033 1.7 0.084

Table : Fit statistics for linear and non-linear dose-response for
dose-response meta-analysis of BMI and renal cancer risk

Q p-value I2 R2

Linear 14.1 0.049 50 67
Non-linear 22.4 0.071 37 70
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Figure : Predicted dose-response association between BMI and risk
of renal cell cancer
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Alcohol intake and colorectal cancer

R2 may warn about lack of fit even if Q statistic and I2 do not
reveal any problems.

We compare two analyses:
I Linear trend

log(RRij) = βjXij + εij (14)

I Non-linear relation (restricted cubic spline):

log(RRij) = β1jX1ij + β2jX2ij + εij (15)

Crippa A., Orsini N. Institute of Environmental Medicine, KI

GOF in dose-response meta-analysis



Introduction Estimation A measure of GOF Examples Conclusion

Table : Estimated coefficients for linear and non-linear dose-response
meta-analysis of alcohol intake and risk of colorectal cancer

Estimate Parameter Estimate Std. Error z Pr(>|z|)
Linear β1 0.006 0.001 4.7 <0.001
Non-linear β1 -0.001 <0.001 -0.3 0.800

β2 0.021 0.010 2.0 0.045

Table : Fit statistics for linear and non-linear dose-response
meta-analysis between alcohol intake and risk of colorectal cancer

Q p-value I2 R2

Linear 4.7 0.702 0 32
Non-linear 14.2 0.432 2 38
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Figure : Predicted dose-response relation based on decorrelate data
for dose-response meta-analysis between alcohol intake and
colorectal cancer
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Alcohol consumption and risk of esophageal cancer

R2 provides a different information from the usual fit statistics.

I Fractional Polynomials:

log(RRij) = βjXij + β2Xij log(Xij) + εij (16)

I Restricted cubic spline:

log(RRij) = β1jX1ij + β2jX2ij + εij (17)
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Table : Fit statistics for fractional polynomial and spline analysis in
dose-response meta-analysis between alcohol and esophageal
cancer

R2 AIC
Fractional Polynomial 70 -115.5

Spline 68 -44.9

I AIC tells us which one is better
I R2 evaluates how much the fit differ
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Figure : Predicted dose-response relations based on fractional
polynomial and restricted cubic spline models for dose-response
meta-analysis between alcohol and esophageal cancer
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Conclusion

I Increasing number of published dose-response
meta-analyses

I Fit statistics refer to statistical heterogeneity
I No measure of agreement between observed and modeled

data

Strengths

I A possible graphical comparison
I R2 as summary measure of agreement
I Improve the current practice
I dosresmeta R package available at
http://cran.r-project.org/

Crippa A., Orsini N. Institute of Environmental Medicine, KI

GOF in dose-response meta-analysis

http://cran.r-project.org/


Introduction Estimation A measure of GOF Examples Conclusion

Further investigations

I sensitivity analysis related to influential points;
I analysis of potential bias;
I development of robust methods;
I modeling risk instead of relative risk;
I including time dimension;
I improvements in the "dosresmeta" R package
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Thank you!
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