

A new measure of between-studies heterogeneity in meta-analysis

XXVIIIth International Biometric Conference

Alessio Crippa

July 11th 2016

Background and Aims		Conclusions	

Acknowledgements

My co-authors:

- Polyna Khudyakov
- Molin Wang
- Nicola Orsini
- Donna Spiegelman

Funding organization:

- Karolinska Institutet's funding for doctoral students
- Young Scholar Award from the Karolinska Institutet's Strategic Program in Epidemiology

Heterogeneity in meta-analysis

Clinical vs statistical heterogeneity

 Excess of between-studies variation in the effect estimates above that expected by chance

Important to decide the appropriateness of combining results

Background and Aims	Methods	Results	Conclusions	
○●○○	0000	000	O	

Notation

Meta-analysis based on K studies

$$\hat{\beta}_i \sim N\left(\bar{\beta}, \tau^2 + v_i\right)$$
 (1)

 τ^2 is the common between-study variation ($\tau^2=0$ in a fixed-effects model)

 v_i is the study-specific within (error) variation

$$\bar{\beta} = \frac{\sum_{i=1}^{K} \hat{\beta}_i w_i}{\sum_{i=1}^{K} w_i}$$
$$\operatorname{Var}(\beta) = \left(\sum_{i=1}^{K} w_i\right)^{-1}$$
(2)

$$w_i = \left(\tau^2 + v_i\right)^{-1}$$

How to detect heterogeneity

• Estimate of τ^2

May be difficult to interpret and compare

Background and Aims		Conclusions	
0000			

Aims

Homogeneity of within-studies variances is unlikely to hold

Analysis	within-study variances	$\sigma^2(I^2)$	$\sigma^2(R_l)$
A	[6, 6.1, 6.2, 5.9, 6, 5.9, 6.1, 5.8, 6, 6.2]	6.018	6.017
В	[5, 19, 3, 15, 6, 23, 4, 17, 2, 8.8]	6.017	5.602

- To propose a new measure of heterogeneity that relaxes this assumption
- Compare the performances of the new estimator through simulations studies

R_b a new measure of heterogeneity

The new measure quantifies the contribution of τ^2 relative to the variance of the pooled random effects estimate

If
$$v_i = 0$$
, $\forall i$, $\operatorname{Var}(\beta) = \tau^2 / K$
$$R_b = \frac{\tau^2}{K \operatorname{Var}(\hat{\beta}_{re})} = \frac{1}{K} \sum_{i=1}^K \frac{\tau^2}{v_i + \tau^2}$$
(3)

It can be expressed as percentage

Background and AimsMethodsResultsConclusionsReferences00000000000

R_b a new measure of heterogeneity (2)

It is a function of τ^2 , K, and v_i

 R_b satisfied the properties for a measure of heterogeneity

As the other measures, it depends on the precision of β_i (v_i)

 R_b is a consistent and asymptotically normal distributed estimator (Wald-type confidence intervals)

Compared to I^2 and R_I

It can be expressed as the average of the proportions of τ^2 to individual overall variances

$$R_b < R_I$$
 and $I^2 < R_I$

Diffences between I^2 and R_b depend upon distribution for v_i

It coincides with I^2 and R_I when $v_i = \sigma^2 \ \forall i = 1, \dots, K$

Simulation study

- Different scenario simulations ($R_b = 0.1, 0.5, 0.7; CV_{v_i} = 0.5,$
 - 1, 2; $CV_B = 0.5$, 1, 3; K = 5, 20, 50, 100)
- Percent relative bias and covarage
- https://alecri.shinyapps.io/bias/

Simulation results: R_b

- Invariant to the magnitude of $\bar{\beta}$
- Bias for small K (also for I^2 and R_I)
- ▶ It decreased as *K* increased
- Positive bias for low R_b
- ▶ No specific pattern according to CV_{vi} and CV_B
- Good coverage across simulation scenarios

 Background and Aims
 Methods
 Results
 Conclusions
 References

 0000
 000
 000
 0
 0
 0

Simulation results: comparison

• I^2 and R_I overestimated the impact of heterogeneity

• Bias and coverage for I^2 and R_I worsened as CV_{v_i} increased

Background and Aims	Results	Conclusions	
	000		

Illustrative examples

1st author	Κ	Effect size	β (95% CI)	p Q-test	CV _{vi}	R _b (95% CI)	l ² (95% CI)	R _I (95% CI)
Gibson	13	Std. Mean Diff.	-0.19 (-0.35, -0.04)	0.008	0.67	51 (17, 85)	55 (11, 85)	56 (19, 94)
Colditz	13	Log RR	-0.71 (-1.06, -0.36)	< 0.001	1.14	74 (53, 96)	92 (82, 98)	94 (85, 100)
Millet	15	Log OR	-0.05 (-0.20, -0.11)	0.53	1.78	39 (9, 68)	61 (16, 100)	77 (44, 100)

- R_b was similar to I^2 and R_l in case of homogenous v_i
- ► Differences increased as CV_{vi} increased

Conclusions

- *R_b* is easy to interpret as the proportion of the variance of the pooled estimate due to heterogeneity
- It does not make any assumption about the distribution of v_i
- It is easy to compute (implemented in hetmeta R package and %metaanal SAS macro)
- We recommend R_b as preferred measure of heterogeneity

References I

- Crippa A, Khudyakov P, Wang M, Orsini N, Spiegelman D. A new measure of between-studies heterogeneity in meta-analysis.
 Statistics in medicine. 2016 Jan 1.
- Takkouche B, Cadarso-Suárez C, Spiegelman D. Evaluation of old and new tests of heterogeneity in epidemiologic meta-analysis.
 American Journal of Epidemiology. 1999 Jul 15;150(2):206-15.
- Higgins J, Thompson SG. Quantifying heterogeneity in a meta-analysis. Statistics in medicine. 2002 Jun 15;21(11):1539-58.
- http://alecri.github.io/software/hetmeta
- http://www.hsph.harvard.edu/donna-spiegelman/software/ metaanal

Simulation study: details

True
$$R_b$$
: 0.1, 0.5, 0.7
 $\bar{\beta} = \log(\text{RR}) = 1, 1.5, 2, 4$
 $CV_B = \tau/\bar{\beta} = 0.5, 1, 3$
 $K = 5, 20, 50, 100$
 $v_i \sim \log N(\text{E}[v_i], \text{Var}[v_i])$
 $\text{E}[v_i] = (\tau^2/R_b) - \tau^2 \text{ and } \text{Var}[v_i] = (CV_{v_i}\text{E}[v_i])^2$
 $CV_{vi} = \sqrt{\text{Var}[v_i]}/\text{E}[v_i] = 0.5, 1, 2$
 $\beta_i \sim N(\beta, \tau^2 + v_i)$

each scenario replicated $N\,=\,10,000$