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Heterogeneity in meta-analysis

I Clinical vs statistical heterogeneity

I Excess of between-studies variation in the effect estimates
above that expected by chance

I Important to decide the appropriateness of combining results
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Notation
Meta-analysis based on K studies

β̂i ∼ N
(
β̄, τ2 + vi

)
(1)

τ2 is the common between-study variation (τ2 = 0 in a
fixed-effects model)
vi is the study-specific within (error) variation

β̄ =
∑K

i=1 β̂iwi∑K
i=1 wi

Var (β) =
( K∑

i=1
wi

)−1

(2)

wi =
(
τ2 + vi

)−1
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How to detect heterogeneity

I Estimate of τ2

May be difficult to interpret and compare
I Cochran’s χ2 test or the Q-test

May have poor/excessive power
I Measures of heterogeneity: RI

1 and I2 2

Defined as τ2

τ2+σ2

σ2 is a summary measure of the observed within-study
variance, vi

1σ2 = (K − 1)
∑K

i=1 wi/
(

(
∑K

i=1 wi)2 −
∑K

i=1 w2
i

)
2σ2 = K/(

∑K
i=1 wi)

Alessio Crippa XXVIIIth International Biometric Conference July 11th 2016

5



Background and Aims Methods Results Conclusions References

Aims

Homogeneity of within-studies variances is unlikely to hold

Analysis within-study variances σ2(I2) σ2(RI)
A [6, 6.1, 6.2, 5.9, 6, 5.9, 6.1, 5.8, 6, 6.2] 6.018 6.017
B [5, 19, 3, 15, 6, 23, 4, 17, 2, 8.8] 6.017 5.602

I To propose a new measure of heterogeneity that relaxes this
assumption

I Compare the performances of the new estimator through
simulations studies
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Rb a new measure of heterogeneity

The new measure quantifies the contribution of τ2 relative to the
variance of the pooled random effects estimate

If vi = 0,∀i , Var (β) = τ2/K

Rb = τ2

KVar
(
β̂re
) = 1

K

K∑
i=1

τ2

vi + τ2 (3)

It can be expressed as percentage
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Rb a new measure of heterogeneity (2)

It is a function of τ2, K , and vi

Rb satisfied the properties for a measure of heterogeneity

As the other measures, it depends on the precision of βi (vi )

Rb is a consistent and asymptotically normal distributed estimator
(Wald-type confidence intervals)
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Compared to I2 and RI

It can be expressed as the average of the proportions of τ2 to
individual overall variances

Rb < RI and I2 < RI

Diffences between I2 and Rb depend upon distribution for vi

It coincides with I2 and RI when vi = σ2 ∀i = 1, . . . ,K
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Simulation study
I Different scenario simulations (Rb = 0.1, 0.5, 0.7; CVvi = 0.5,

1, 2; CVB = 0.5, 1, 3; K = 5, 20, 50, 100)
I Percent relative bias and covarage
I https://alecri.shinyapps.io/bias/
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Simulation results: Rb

I Invariant to the magnitude of β̄

I Bias for small K (also for I2 and RI)

I It decreased as K increased

I Positive bias for low Rb

I No specific pattern according to CVvi and CVB

I Good coverage across simulation scenarios
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Simulation results: comparison
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I I2 and RI overestimated the impact of heterogeneity

I Bias and coverage for I2 and RI worsened as CVvi increased
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Illustrative examples

1st author K Effect size β (95% CI) p Q-test CVvi Rb (95% CI) I2 (95% CI) RI (95% CI)
Gibson 13 Std. Mean Diff. -0.19 (-0.35, -0.04) 0.008 0.67 51 (17, 85) 55 (11, 85) 56 (19, 94)
Colditz 13 Log RR -0.71 (-1.06, -0.36) <0.001 1.14 74 (53, 96) 92 (82, 98) 94 (85, 100)
Millet 15 Log OR -0.05 (-0.20, -0.11) 0.53 1.78 39 (9, 68) 61 (16, 100) 77 (44, 100)

I Rb was similar to I2 and RI in case of homogenous vi

I Differences increased as CVvi increased
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Conclusions

I Rb is easy to interpret as the proportion of the variance of the
pooled estimate due to heterogeneity

I It does not make any assumption about the distribution of vi

I It is easy to compute (implemented in hetmeta R package
and %metaanal SAS macro)

I We recommend Rb as preferred measure of heterogeneity

Alessio Crippa XXVIIIth International Biometric Conference July 11th 2016

14



Background and Aims Methods Results Conclusions References

References I
I Crippa A, Khudyakov P, Wang M, Orsini N, Spiegelman D. A new

measure of between-studies heterogeneity in meta-analysis.
Statistics in medicine. 2016 Jan 1.

I Takkouche B, Cadarso-Suárez C, Spiegelman D. Evaluation of old
and new tests of heterogeneity in epidemiologic meta-analysis.
American Journal of Epidemiology. 1999 Jul 15;150(2):206-15.

I Higgins J, Thompson SG. Quantifying heterogeneity in a
meta-analysis. Statistics in medicine. 2002 Jun 15;21(11):1539-58.

I http://alecri.github.io/software/hetmeta

I http://www.hsph.harvard.edu/donna-spiegelman/software/
metaanal

Alessio Crippa XXVIIIth International Biometric Conference July 11th 2016

15

http://alecri.github.io/software/hetmeta
http://www.hsph.harvard.edu/donna- spiegelman/software/metaanal
http://www.hsph.harvard.edu/donna- spiegelman/software/metaanal


Simulation study: details

True Rb: 0.1, 0.5, 0.7

β̄ = log(RR) = 1, 1.5, 2, 4

CVB = τ/β̄ = 0.5, 1, 3

K = 5, 20, 50, 100

vi ∼ logN(E[vi ],Var[vi ])
E[vi ] = (τ2/Rb)− τ2 and Var[vi ] = (CVvi E[vi ])2

CVvi =
√

Var[vi ]/E[vi ] = 0.5, 1, 2

βi ∼ N(β, τ2 + vi )

each scenario replicated N = 10,000
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