Supplementary Stata code for Statistical Methods for Meta-Analysis

Alessio Crippa, Karolinska Institutet

08 September 2020

Description

This page is a supplementary material for the lecture Statistical Methods for Meta-Analysis, in the course Systematic Review and Meta-Analysis.

It contains the Stata code for exemplifying the theoretical aspects presented in the slides using real worked example. The code has been kindly written by Nicola Orsini.

To reproduce the results you need to load the following packages

ssc install metan
ssc install metareg
ssc install metaan
ssc install metafunnel
ssc install metabias
ssc install metatrim
ssc install metacum

Fixed-effect model

Data (Hine et al.)

The example from Hine et al. (1989) contains the results from 6 studies on the mortality risk due to prophylactic use of lidocaine after a heart attack.

. set scheme s1mono, permanently
(set scheme preference recorded)

. 
. clear

. use dat.hine1989.dta

. 
. gen cases_1 = ai

. gen controls_1 = n1i-ai

. gen cases_0 = ci

. gen controls_0 = n2i-ci

. 
. list

     ┌────────────────────────────────────────────────────────────────────────────────────────┐
     │ study   source           n1i   n2i   ai   ci   cases_1   contro~1   cases_0   contro~0 │
     ├────────────────────────────────────────────────────────────────────────────────────────┤
  1. │     1   Chopra et al.     39    43    2    1         2         37         1         42 │
  2. │     2   Mogensen          44    44    4    4         4         40         4         40 │
  3. │     3   Pitt et al.      107   110    6    4         6        101         4        106 │
  4. │     4   Darby et al.     103   100    7    5         7         96         5         95 │
  5. │     5   Bennett et al.   110   106    7    3         7        103         3        103 │
     ├────────────────────────────────────────────────────────────────────────────────────────┤
  6. │     6   O'Brien et al.   154   146   11    4        11        143         4        142 │
     └────────────────────────────────────────────────────────────────────────────────────────┘

Effect size & fixed-effect model

Among different possibilities, we choose to compute risk differences as preferable effect size.

. metan cases_1 controls_1 cases_0 controls_0, classic textsize(200) rd lcols(source) fixed label(namevar=source) counts

           Study     |     RD    [95% Conf. Interval]     % Weight
─────────────────────+───────────────────────────────────────────────────
Chopra et al.        |  0.028      -0.055     0.111          7.40
Mogensen             |  0.000      -0.120     0.120          7.96
Pitt et al.          |  0.020      -0.036     0.076         19.63
Darby et al.         |  0.018      -0.047     0.083         18.36
Bennett et al.       |  0.035      -0.020     0.091         19.53
O'Brien et al.       |  0.044      -0.005     0.093         27.12
─────────────────────+───────────────────────────────────────────────────
M-H pooled RD        |  0.028       0.002     0.054        100.00
─────────────────────+───────────────────────────────────────────────────

  Heterogeneity chi-squared =   0.87 (d.f. = 5) p = 0.972
  I-squared (variation in RD attributable to heterogeneity) =   0.0%

  Test of RD=0 : z=   2.11 p = 0.035

. graph export forrest_1.png, replace
(file forrest_1.png written in PNG format)

Forest plot

Random-effects model

Data (Berkey et al.)

The example from Berkey et al. (1995) contains the results with the BCG vaccine dataset (Colditz et al., 1994).

. clear

. use dat.bcg.dta

. list

     ┌────────────────────────────────────────────────────────────────────────────────────────┐
     │ trial   author                 year   tpos    tneg   cpos    cneg   ablat   alloc      │
     ├────────────────────────────────────────────────────────────────────────────────────────┤
  1. │     1   Aronson                1948      4     119     11     128      44   random     │
  2. │     2   Ferguson & Simes       1949      6     300     29     274      55   random     │
  3. │     3   Rosenthal et al        1960      3     228     11     209      42   random     │
  4. │     4   Hart & Sutherland      1977     62   13536    248   12619      52   random     │
  5. │     5   Frimodt-Moller et al   1973     33    5036     47    5761      13   alternate  │
     ├────────────────────────────────────────────────────────────────────────────────────────┤
  6. │     6   Stein & Aronson        1953    180    1361    372    1079      44   alternate  │
  7. │     7   Vandiviere et al       1973      8    2537     10     619      19   random     │
  8. │     8   TPT Madras             1980    505   87886    499   87892      13   random     │
  9. │     9   Coetzee & Berjak       1968     29    7470     45    7232      27   random     │
 10. │    10   Rosenthal et al        1961     17    1699     65    1600      42   systematic │
     ├────────────────────────────────────────────────────────────────────────────────────────┤
 11. │    11   Comstock et al         1974    186   50448    141   27197      18   systematic │
 12. │    12   Comstock & Webster     1969      5    2493      3    2338      33   systematic │
 13. │    13   Comstock et al         1976     27   16886     29   17825      33   systematic │
     └────────────────────────────────────────────────────────────────────────────────────────┘

Effect size & random-effects model

. metan tpos tneg cpos cneg, classic textsize(200) rr lcols(author year) random counts

           Study     |     RR    [95% Conf. Interval]     % Weight
─────────────────────+───────────────────────────────────────────────────
Aronson              |  0.411       0.134     1.257          5.04
Ferguson & Simes     |  0.205       0.086     0.486          6.35
Rosenthal et al      |  0.260       0.073     0.919          4.42
Hart & Sutherland    |  0.237       0.179     0.312          9.71
Frimodt-Moller et al |  0.804       0.516     1.254          8.87
Stein & Aronson      |  0.456       0.387     0.536         10.12
Vandiviere et al     |  0.198       0.078     0.499          6.01
TPT Madras           |  1.012       0.895     1.145         10.21
Coetzee & Berjak     |  0.625       0.393     0.996          8.75
Rosenthal et al      |  0.254       0.149     0.431          8.37
Comstock et al       |  0.712       0.573     0.886          9.94
Comstock & Webster   |  1.562       0.374     6.528          3.80
Comstock et al       |  0.983       0.582     1.659          8.40
─────────────────────+───────────────────────────────────────────────────
D+L pooled RR        |  0.490       0.345     0.695        100.00
─────────────────────+───────────────────────────────────────────────────

  Heterogeneity chi-squared = 152.57 (d.f. = 12) p = 0.000
  I-squared (variation in RR attributable to heterogeneity) =  92.1%
  Estimate of between-study variance Tau-squared =  0.3095

  Test of RR=1 : z=   3.99 p = 0.000

. graph export forrest_2.png, replace
(file forrest_2.png written in PNG format)

Forest plot

Meta regression

. gen y_i = ln(_ES)

. gen se_i = _selogES

. metareg y_i  ablat, wsse(se_i) reml  graph

Meta-regression                                       Number of obs  =      13
REML estimate of between-study variance               tau2           =  .07635
% residual variation due to heterogeneity             I-squared_res  =  64.21%
Proportion of between-study variance explained        Adj R-squared  =  75.63%
With Knapp-Hartung modification
─────────────┬────────────────────────────────────────────────────────────────
         y_i │      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
─────────────┼────────────────────────────────────────────────────────────────
       ablat │  -.0291017   .0082014    -3.55   0.005    -.0471529   -.0110505
       _cons │   .2514682   .2839253     0.89   0.395    -.3734471    .8763835
─────────────┴────────────────────────────────────────────────────────────────

. graph export metareg.png, replace
(file metareg.png written in PNG format)

More customized plot

. predict fitted, xb     

. predict se_fitted, stdp

. 
. gen lo = fitted-1.96*se_fitted

. gen hi = fitted+1.96*se_fitted

. 
. gen o_rr = exp(y_i)

. gen f_rr = exp(fitted)

. gen f_lb = exp(lo)

. gen f_ub = exp(hi)

. 
. twoway (rarea f_lb f_ub ablat, sort color(gs10%20)  ) ///
> (scatter o_rr ablat [aw=1/se_i^2], msymbol(o) mc(black%50)) ///
> (scatter o_rr ablat , msymbol(i) mlabel(trial) mlabpos(3)) ///
> , yscale(log) ytitle("Relative Risk") legend(off) ///
> xscale(range(0 60)) xtitle("Absolute Latitude") ///
> ylabel(.5 1 1.5 2, angle(horiz) format(%3.2f)) plotregion(style(none)) ///
> yline(1, lp(dash))

. graph export metareg_customized.png, replace
(file metareg_customized.png written in PNG format)

Heterogeneity

Data (Viechtbauer et al.)

The example from Viechtbauer et al. (2007) contains the results from 9 studies on the effectiveness of diuretics in pregnancy for preventing pre-eclampsia (Collins et al. (1985)).

. use dat.collins1985b.dta , clear

. list

     ┌─────────────────────────────────────────────────────────────────────────────┐
     │ id   author                    year   pre_nti   pre_nci   pre_xti   pre_xci │
     ├─────────────────────────────────────────────────────────────────────────────┤
  1. │  1   Weseley & Douglas         1962       131       136        14        14 │
  2. │  2   Flowers et al.            1962       385       134        21        17 │
  3. │  3   Menzies                   1964        57        48        14        24 │
  4. │  4   Fallis et al.             1964        38        40         6        18 │
  5. │  5   Cuadros & Tatum           1964      1011       760        12        35 │
     ├─────────────────────────────────────────────────────────────────────────────┤
  6. │  6   Landesman et al.          1965      1370      1336       138       175 │
  7. │  7   Kraus et al.              1966       506       524        15        20 │
  8. │  8   Tervila & Vartiainen      1971       108       103         6         2 │
  9. │  9   Campbell & MacGillivray   1975       153       102        65        40 │
     └─────────────────────────────────────────────────────────────────────────────┘

Effect size & random-effects model

. gen t_c = pre_nt- pre_xti

. gen c_c = pre_nci-pre_xci

. metan  pre_xti t_c pre_xci c_c, classic textsize(200) or lcols(author) random counts 

           Study     |     OR    [95% Conf. Interval]     % Weight
─────────────────────+───────────────────────────────────────────────────
Weseley & Douglas    |  1.043       0.477     2.282         10.66
Flowers et al.       |  0.397       0.203     0.778         11.94
Menzies              |  0.326       0.142     0.744         10.18
Fallis et al.        |  0.229       0.078     0.669          7.85
Cuadros & Tatum      |  0.249       0.128     0.483         12.06
Landesman et al.     |  0.743       0.586     0.942         16.98
Kraus et al.         |  0.770       0.390     1.521         11.84
Tervila & Vartiainen |  2.971       0.586    15.068          4.53
Campbell & MacGilliv |  1.145       0.687     1.908         13.95
─────────────────────+───────────────────────────────────────────────────
D+L pooled OR        |  0.596       0.400     0.889        100.00
─────────────────────+───────────────────────────────────────────────────

  Heterogeneity chi-squared =  27.27 (d.f. = 8) p = 0.001
  I-squared (variation in OR attributable to heterogeneity) =  70.7%
  Estimate of between-study variance Tau-squared =  0.2298

  Test of OR=1 : z=   2.54 p = 0.011

Alternative estimators for τ2 and conficence intervals

. gen y_i = ln(_ES)

. gen se_i = _selogES

. 
. metaan y_i se_i , dl


DerSimonian-Laird random-effects method selected
─────────────────────┬─────────────────────────────────────────────
        Study        │   Effect   [95% Conf. Interval]   % Weight
─────────────────────┼─────────────────────────────────────────────
1                    │    0.042     -0.741     0.825      10.66
2                    │   -0.924     -1.596    -0.251      11.94
3                    │   -1.122     -1.949    -0.295      10.18
4                    │   -1.473     -2.545    -0.402       7.85
5                    │   -1.391     -2.054    -0.728      12.06
6                    │   -0.297     -0.534    -0.060      16.98
7                    │   -0.262     -0.942     0.419      11.84
8                    │    1.089     -0.535     2.713       4.53
9                    │    0.135     -0.375     0.646      13.95
─────────────────────┼─────────────────────────────────────────────
Overall effect (dl)  │   -0.517     -0.916    -0.117     100.00
─────────────────────┴─────────────────────────────────────────────


Heterogeneity Measures
───────────────┬───────────────────────────────────
               │     value     df     p-value
───────────────┼───────────────────────────────────
Cochrane Q     │      27.26      8     0.001
───────────────┴───────────────────────────────────

───────────────┬───────────────────────────────────
               │     value     [95% Conf. Interval]
───────────────┼───────────────────────────────────
I^2(%)         │      70.66    41.83    85.20
H^2            │       3.41     1.72     6.76
tau^2(dl)      │      0.230
───────────────┴───────────────────────────────────

. metaan y_i se_i , ml


Maximum Likelihood method selected
─────────────────────┬─────────────────────────────────────────────
        Study        │   Effect   [95% Conf. Interval]   % Weight
─────────────────────┼─────────────────────────────────────────────
1                    │    0.042     -0.741     0.825      10.69
2                    │   -0.924     -1.596    -0.251      11.95
3                    │   -1.122     -1.949    -0.295      10.22
4                    │   -1.473     -2.545    -0.402       7.92
5                    │   -1.391     -2.054    -0.728      12.06
6                    │   -0.297     -0.534    -0.060      16.81
7                    │   -0.262     -0.942     0.419      11.85
8                    │    1.089     -0.535     2.713       4.60
9                    │    0.135     -0.375     0.646      13.89
─────────────────────┼─────────────────────────────────────────────
Overall effect (ml)  │   -0.517     -0.921    -0.113     100.00
─────────────────────┴─────────────────────────────────────────────
ML method succesfully converged


Heterogeneity Measures
───────────────┬───────────────────────────────────
               │     value     df     p-value
───────────────┼───────────────────────────────────
Cochrane Q     │      27.26      8     0.001
───────────────┴───────────────────────────────────

───────────────┬───────────────────────────────────
               │     value     [95% Conf. Interval]
───────────────┼───────────────────────────────────
I^2(%)         │      71.44    43.62    85.53
H^2            │       3.50     1.77     6.91
tau^2(ml)      │      0.239
───────────────┴───────────────────────────────────

. metaan y_i se_i , reml


Restricted Maximum Likelihood (REML) method selected
─────────────────────┬─────────────────────────────────────────────
        Study        │   Effect   [95% Conf. Interval]   % Weight
─────────────────────┼─────────────────────────────────────────────
1                    │    0.042     -0.741     0.825      10.86
2                    │   -0.924     -1.596    -0.251      11.95
3                    │   -1.122     -1.949    -0.295      10.45
4                    │   -1.473     -2.545    -0.402       8.34
5                    │   -1.391     -2.054    -0.728      12.05
6                    │   -0.297     -0.534    -0.060      15.86
7                    │   -0.262     -0.942     0.419      11.87
8                    │    1.089     -0.535     2.713       5.07
9                    │    0.135     -0.375     0.646      13.57
─────────────────────┼─────────────────────────────────────────────
Overall effect (reml)│   -0.518     -0.956    -0.080     100.00
─────────────────────┴─────────────────────────────────────────────
REML method succesfully converged


Heterogeneity Measures
───────────────┬───────────────────────────────────
               │     value     df     p-value
───────────────┼───────────────────────────────────
Cochrane Q     │      27.26      8     0.001
───────────────┴───────────────────────────────────

───────────────┬───────────────────────────────────
               │     value     [95% Conf. Interval]
───────────────┼───────────────────────────────────
I^2(%)         │      75.92    53.78    87.46
H^2            │       4.15     2.16     7.97
tau^2(reml)    │      0.301
───────────────┴───────────────────────────────────

Sensitivity analysis

Data (Hackshaw et al.)

. use dat.hackshaw1998.dta , clear

. list

     ┌────────────────────────────────────────────────────────────────────────────────┐
     │ study   author         year   country     design         cases      yi      vi │
     ├────────────────────────────────────────────────────────────────────────────────┤
  1. │     1   Garfinkel      1981   USA         cohort           153    .166   .0188 │
  2. │     2   Hirayama       1984   Japan       cohort           200    .372    .033 │
  3. │     3   Butler         1988   USA         cohort             8    .703   .5402 │
  4. │     4   Cardenas       1997   USA         cohort           150    .182   .0313 │
  5. │     5   Chan           1982   Hong Kong   case-control      84   -.288   .0797 │
     ├────────────────────────────────────────────────────────────────────────────────┤
  6. │     6   Correa         1983   USA         case-control      22    .728   .2273 │
  7. │     7   Trichopolous   1983   Greece      case-control      62    .756   .0889 │
  8. │     8   Buffler        1984   USA         case-control      41   -.223   .1927 │
  9. │     9   Kabat          1984   USA         case-control      24   -.236    .339 │
 10. │    10   Lam            1985   Hong Kong   case-control      60    .698   .0981 │
     ├────────────────────────────────────────────────────────────────────────────────┤
 11. │    11   Garfinkel      1985   USA         case-control     134    .207   .0456 │
 12. │    12   Wu             1985   USA         case-control      29    .182   .2317 │
 13. │    13   Akiba          1986   Japan       case-control      94    .419   .0796 │
 14. │    14   Lee            1986   UK          case-control      32     .03   .2174 │
 15. │    15   Koo            1987   Hong Kong   case-control      86    .438    .077 │
     ├────────────────────────────────────────────────────────────────────────────────┤
 16. │    16   Pershagen      1987   Sweden      case-control      70     .03   .0715 │
 17. │    17   Humble         1987   USA         case-control      20     .85   .2926 │
 18. │    18   Lam            1987   Hong Kong   case-control     199    .501   .0324 │
 19. │    19   Gao            1987   China       case-control     246    .174   .0363 │
 20. │    20   Brownson       1987   USA         case-control      19    .419   .4838 │
     ├────────────────────────────────────────────────────────────────────────────────┤
 21. │    21   Geng           1988   China       case-control      54     .77   .1238 │
 22. │    22   Shimizu        1988   Japan       case-control      90    .077   .0711 │
 23. │    23   Inoue          1988   Japan       case-control      22    .936   .3982 │
 24. │    24   Kalandidi      1990   Greece      case-control      90    .482   .0896 │
 25. │    25   Sobue          1990   Japan       case-control     144    .058   .0337 │
     ├────────────────────────────────────────────────────────────────────────────────┤
 26. │    26   Wu-Williams    1990   China       case-control     417   -.236   .0161 │
 27. │    27   Liu            1991   China       case-control      54   -.301   .1802 │
 28. │    28   Jockel         1991   Germany     case-control      23     .82   .3171 │
 29. │    29   Brownson       1992   USA         case-control     431    -.03   .0125 │
 30. │    30   Stockwell      1992   USA         case-control     210     .47   .1137 │
     ├────────────────────────────────────────────────────────────────────────────────┤
 31. │    31   Du             1993   China       case-control      75    .174   .0893 │
 32. │    32   Liu            1993   China       case-control      38    .507    .176 │
 33. │    33   Fontham        1994   USA         case-control     651    .231     .01 │
 34. │    34   Kabat          1995   USA         case-control      67    .095   .0862 │
 35. │    35   Zaridze        1995   Russia      case-control     162    .507   .0399 │
     ├────────────────────────────────────────────────────────────────────────────────┤
 36. │    36   Sun            1996   China       case-control     230    .148   .0364 │
 37. │    37   Wang           1996   China       case-control     135    .104   .0664 │
     └────────────────────────────────────────────────────────────────────────────────┘

Meta-analytic model

. gen si = sqrt(vi)

. metan yi si, classic textsize(200) fixed

           Study     |     ES    [95% Conf. Interval]     % Weight
─────────────────────+───────────────────────────────────────────────────
1                    |  0.166      -0.103     0.435          7.40
2                    |  0.372       0.016     0.728          4.21
3                    |  0.703      -0.738     2.144          0.26
4                    |  0.182      -0.165     0.529          4.44
5                    | -0.288      -0.841     0.265          1.74
6                    |  0.728      -0.206     1.662          0.61
7                    |  0.756       0.172     1.340          1.56
8                    | -0.223      -1.083     0.637          0.72
9                    | -0.236      -1.377     0.905          0.41
10                   |  0.698       0.084     1.312          1.42
11                   |  0.207      -0.212     0.626          3.05
12                   |  0.182      -0.761     1.125          0.60
13                   |  0.419      -0.134     0.972          1.75
14                   |  0.030      -0.884     0.944          0.64
15                   |  0.438      -0.106     0.982          1.81
16                   |  0.030      -0.494     0.554          1.94
17                   |  0.850      -0.210     1.910          0.48
18                   |  0.501       0.148     0.854          4.29
19                   |  0.174      -0.199     0.547          3.83
20                   |  0.419      -0.944     1.782          0.29
21                   |  0.770       0.080     1.460          1.12
22                   |  0.077      -0.446     0.600          1.96
23                   |  0.936      -0.301     2.173          0.35
24                   |  0.482      -0.105     1.069          1.55
25                   |  0.058      -0.302     0.418          4.13
26                   | -0.236      -0.485     0.013          8.64
27                   | -0.301      -1.133     0.531          0.77
28                   |  0.820      -0.284     1.924          0.44
29                   | -0.030      -0.249     0.189         11.12
30                   |  0.470      -0.191     1.131          1.22
31                   |  0.174      -0.412     0.760          1.56
32                   |  0.507      -0.315     1.329          0.79
33                   |  0.231       0.035     0.427         13.90
34                   |  0.095      -0.480     0.670          1.61
35                   |  0.507       0.115     0.899          3.48
36                   |  0.148      -0.226     0.522          3.82
37                   |  0.104      -0.401     0.609          2.09
─────────────────────+───────────────────────────────────────────────────
I-V pooled ES        |  0.186       0.113     0.259        100.00
─────────────────────+───────────────────────────────────────────────────

  Heterogeneity chi-squared =  47.55 (d.f. = 36) p = 0.094
  I-squared (variation in ES attributable to heterogeneity) =  24.3%

  Test of ES=0 : z=   4.98 p = 0.000

Funnel plot

. metafunnel yi si, xtitle(Log odds ratio) ytitle(Standard error of log OR)

Note: default data input format (theta, se_theta) assumed.

. graph export funnel.png, replace
(file funnel.png written in PNG format)

Egger test

. metabias yi si, egger

Note: data input format theta se_theta assumed.

Egger's test for small-study effects:
Regress standard normal deviate of intervention
effect estimate against its standard error

Number of studies =  37                                Root MSE      =   1.081
─────────────┬────────────────────────────────────────────────────────────────
     Std_Eff │      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
─────────────┼────────────────────────────────────────────────────────────────
       slope │   .0050997   .0858426     0.06   0.953    -.1691701    .1793695
        bias │   .9017812   .3784859     2.38   0.023      .133414    1.670148
─────────────┴────────────────────────────────────────────────────────────────

Test of H0: no small-study effects          P = 0.023

Trim-and-fill analysis

. metatrim yi si, funnel print

Note: default data input format (theta, se_theta) assumed.

Meta-analysis 

       |  Pooled      95% CI         Asymptotic      No. of
Method |     Est   Lower   Upper  z_value  p_value   studies
───────+────────────────────────────────────────────────────
Fixed  |   0.186   0.113   0.259    4.980    0.000     37
Random |   0.214   0.122   0.306    4.538    0.000

Test for heterogeneity: Q= 47.545 on 36 degrees of freedom (p= 0.094)
Moment-based estimate of between studies variance =  0.017

Trimming estimator: Linear
Meta-analysis type: Fixed-effects model

iteration |  estimate    Tn    # to trim     diff
──────────+──────────────────────────────────────
    1     |    0.186    461         6         703
    2     |    0.157    484         7          46
    3     |    0.156    485         7           2
    4     |    0.156    485         7           0

Filled 
Meta-analysis 

       |  Pooled      95% CI         Asymptotic      No. of
Method |     Est   Lower   Upper  z_value  p_value   studies
───────+────────────────────────────────────────────────────
Fixed  |   0.156   0.084   0.227    4.271    0.000     44
Random |   0.173   0.076   0.269    3.515    0.000

Test for heterogeneity: Q= 61.871 on 43 degrees of freedom (p= 0.031)
Moment-based estimate of between studies variance =  0.027

          |      Weights      Study       95% CI
    Study |   Fixed  Random     Est   Lower   Upper
──────────+────────────────────────────────────────
   fill 1 |    2.51    2.35   -0.62   -1.86    0.61
   fill 2 |    3.42    3.13   -0.54   -1.60    0.52
   fill 3 |    3.15    2.91   -0.51   -1.61    0.59
   fill 4 |    8.08    6.65   -0.46   -1.15    0.23
   fill 5 |   11.25    8.66   -0.44   -1.03    0.14
   fill 6 |    4.40    3.94   -0.42   -1.35    0.52
   fill 7 |    1.85    1.76   -0.39   -1.83    1.05
  study 1 |    5.55    4.84   -0.30   -1.13    0.53
  study 2 |   12.55    9.42   -0.29   -0.84    0.27
  study 3 |   62.11   23.47   -0.24   -0.48    0.01
  study 4 |    2.95    2.74   -0.24   -1.38    0.91
  study 5 |    5.19    4.56   -0.22   -1.08    0.64
  study 6 |   80.00   25.63   -0.03   -0.25    0.19
  study 7 |   13.99   10.20    0.03   -0.49    0.55
  study 8 |    4.60    4.10    0.03   -0.88    0.94
  study 9 |   29.67   16.61    0.06   -0.30    0.42
 study 10 |   14.06   10.24    0.08   -0.45    0.60
 study 11 |   11.60    8.87    0.09   -0.48    0.67
 study 12 |   15.06   10.76    0.10   -0.40    0.61
 study 13 |   27.47   15.90    0.15   -0.23    0.52
 study 14 |   53.19   22.07    0.17   -0.10    0.43
 study 15 |   27.55   15.92    0.17   -0.20    0.55
 study 16 |   11.20    8.63    0.17   -0.41    0.76
 study 17 |   31.95   17.30    0.18   -0.16    0.53
 study 18 |    4.32    3.87    0.18   -0.76    1.13
 study 19 |   21.93   13.87    0.21   -0.21    0.63
 study 20 |  100.00   27.39    0.23    0.04    0.43
 study 21 |   30.30   16.80    0.37    0.02    0.73
 study 22 |   12.56    9.42    0.42   -0.13    0.97
 study 23 |    2.07    1.96    0.42   -0.94    1.78
 study 24 |   12.99    9.66    0.44   -0.11    0.98
 study 25 |    8.80    7.13    0.47   -0.19    1.13
 study 26 |   11.16    8.61    0.48   -0.10    1.07
 study 27 |   30.86   16.97    0.50    0.15    0.85
 study 28 |   25.06   15.06    0.51    0.12    0.90
 study 29 |    5.68    4.94    0.51   -0.32    1.33
 study 30 |   10.19    8.02    0.70    0.08    1.31
 study 31 |    1.85    1.76    0.70   -0.74    2.14
 study 32 |    4.40    3.94    0.73   -0.21    1.66
 study 33 |   11.25    8.66    0.76    0.17    1.34
 study 34 |    8.08    6.65    0.77    0.08    1.46
 study 35 |    3.15    2.91    0.82   -0.28    1.92
 study 36 |    3.42    3.13    0.85   -0.21    1.91
 study 37 |    2.51    2.35    0.94   -0.30    2.17

. graph export metatrim.png, replace
(file metatrim.png written in PNG format)

. metacum yi si, fixed graph eform lcols(study year) effect(Odds ratio)

           Study     |     ES    [95% Conf. Interval]     
─────────────────────+───────────────────────────────────────────────────
1                    |  1.181       0.902     1.545        
2                    |  1.272       1.027     1.577        
3                    |  1.285       1.039     1.589        
4                    |  1.261       1.052     1.511        
5                    |  1.199       1.010     1.424        
6                    |  1.221       1.031     1.446        
7                    |  1.275       1.084     1.500        
8                    |  1.254       1.069     1.472        
9                    |  1.243       1.061     1.456        
10                   |  1.281       1.099     1.493        
11                   |  1.275       1.104     1.472        
12                   |  1.273       1.104     1.468        
13                   |  1.287       1.122     1.477        
14                   |  1.281       1.118     1.468        
15                   |  1.295       1.135     1.478        
16                   |  1.278       1.124     1.452        
17                   |  1.289       1.135     1.464        
18                   |  1.326       1.177     1.495        
19                   |  1.313       1.171     1.471        
20                   |  1.314       1.173     1.472        
21                   |  1.331       1.190     1.489        
22                   |  1.319       1.182     1.472        
23                   |  1.326       1.189     1.479        
24                   |  1.335       1.199     1.486        
25                   |  1.310       1.182     1.452        
26                   |  1.217       1.107     1.338        
27                   |  1.209       1.100     1.329        
28                   |  1.215       1.106     1.334        
29                   |  1.173       1.076     1.279        
30                   |  1.179       1.082     1.285        
31                   |  1.179       1.083     1.284        
32                   |  1.184       1.088     1.288        
33                   |  1.195       1.106     1.291        
34                   |  1.193       1.105     1.289        
35                   |  1.208       1.120     1.303        
36                   |  1.206       1.120     1.299        
37                   |  1.204       1.119     1.295        
─────────────────────+───────────────────────────────────────────────────

. graph export cummeta.png, replace
(file cummeta.png written in PNG format)

         

Generated with markstat.