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Dose—response meta—analysis

Summarize results on the relation between a quantitive exposure

and the occurence of a health outcome

Research questions
> Is there any association between the quantitative exposure
and the outcome? What is the shape of the association?
» What are the exposure values associated with the best or
worst outcome?
» What are the factors that can influence the dose—response

shape?
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Increasing number of dose—response meta—analysis

> Several fields of application

150

» Many leading medical and
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epidemiological journals

> Global health organizations and

Number of publications

@
3

foundations

» Measures of public health
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Aggregated data

An example form a case-control data on alcohol consumption and

breast cancer risk

g/day dose case n RR 95% CI
Ref. 0 165 337 1.00 —

<25 2 74 167 0.80 0.51, 1.27
2593 6 90 186 1.16 0.73,1.85
>90.3 11 122 212 157 0.99, 2,51

The RRs are not independent

RR = 1 for the referent category
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Two stage dose—response meta—analysis

First stage

Define and estimate a common dose—response model in each study
(i=1,...,K)

Combine study—specific regression coefficients
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Dose—response analysis

Log—linear model
yi = XiB; +€i (1)
y; vector of non-referent log RRs in the i-th study
X; contains the assigned doses (and/or transformations)
» Model without intercept

» Cov(e;) = X; can be approximated

B =X = X)X E Yy,
V; =Cov(B;) = (X £;'X;) ™" (2)
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Meta—analysis
Pooling of 8 = [31,---,34 and V = [V4,..., VK]

Multivariate random—effect meta—analysis

Bi ~ Np(B, Vi + 1)

1) is the between—study covariance matrix

Cochran @ test and measures of heterogeneity
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Previous methodological papers

v

Random—effects and meta—regression

v

Multivariate meta—analysis

» Approximating covariance matrices

v

Flexible modeling

» Non-zero reference category

v

Evaluation of sources of bias and sensitivity analyses
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Open questions

» Assessment of goodness of fit of dose—response meta—analytic

models has not yet been discussed (Paper I)

» Little emphasis is placed on the assumptions underneath the
common measures of heterogeneity (Paper I/)
» The effect of differential shape and exposure distribution is

hard to be addressed in a two-stage approach (Paper IIl)

» Dose—-response and meta-regression models may be affected by

small number of data points in some of the studies (Paper V)
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Goodness of fit tools for dose—response meta—analysis of binary
outcomes. Res Synth Meth, 2015

Specific aim
» To present and discuss different tools to evaluate the goodness
of fit of dose—response meta—analysis of binary outcomes
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Does the pooled curve adequately summarize the aggregate data?
This question is typically ignored in published meta—analyses

Those that address this question ignore the correlation among the
RRs

Relative Risk
)
I
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Alcohol consumption (grams/day)
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Paper | — Goodness of fit tools

Deviance (D)
» Total absolute distance between fitted and reported RRs
» Test for model specification

Coefficient of determination (R?)
» Descriptive measure of agreement
» Dimensionless measure bounded between 0 and 1

Plot of decorrelated residuals versus exposure
» Visual assessment of the goodness of fit

» Evaluate how the pooled dose—response curve fits the data by

exposure levels

All these tools take into account the correlation between the RRs
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Is the fit of the dose—response curve coffee and risk of stroke adequate?

Model Deviance df p-value R*> RZ,
1) Linear 140 51 <0.0001 41% 39%
2) RCS with 3 knots 75 50 0.01 68% 67%
3) RCS with 3 knots + interaction 64 48 0.06 3% 70%
A) Model 1 B) Model 3
ER ° E
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A new measure of between—studies heterogeneity in meta—analysis.
Stat. Med, 2016

Specific aims
» To propose a new measure of heterogeneity

» Compare the performances of the new estimator through

simulations studies
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Heterogeneity measures, /2 and Ry, relates the heterogeneity, 72,
to the total variance, 72 + o2

o2 is a summary measure of the observed within-study variance, v;

Homogeneity of within-studies variances is unlikely to hold

Analysis within-study variances a?(I?) o%(R))
A [6,6.1,6.2,509, 6,59 6.1,58,6,62] 6.018 6.017
B [5, 19, 3, 15, 6, 23, 4, 17, 2, 8.9] 6.017  5.602

A measure that relaxes this assumption is desirable
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Paper Il - R, a new measure of heterogeneity

The new measure quantifies the contribution of 72 relative to the

variance of the pooled random effects estimate
72 1 K 2

.
Rp= ———  — — - 4
T okvar(Be) K 2w “

Ry, satisfied the properties for a measure of heterogeneity

Ry is a consistent and asymptotically normal distributed estimator
(Wald-type confidence intervals)

It coincides with /% and Ry when v; =02 Vi=1,...,K
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Paper Il - Simulation study

Different scenario simulations (R, = 0.1, 0.5, 0.7; CV,, = 0.5, 1,
2, CVg=105,1, 3, K=5, 20, 50, 100)
https://alecri.shinyapps.io/bias/

Bias (%) as & function of CV) and CV, fixng K and R

4

Alessio Crippa Half-time seminar 12th May 2016

18


https://alecri.shinyapps.io/bias/

Paper Il V Summar

[e]e]e]e] }

Paper Il - Simulation results

No specific pattern in the bias for R}, according to CV,, and CVp

values
I?> and R, overestimated the impact of heterogeneity
The coverage was good for confidence intervals based upon R}

Bias and coverage for I2 and R; worsened as CV,, increased
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Paper IlI

A Pointwise Approach to Dose—Response Meta—Analysis of
Aggregated Data

Specific aims
» To introduce more flexibility in the dose-response analysis

» To allow each study to contribute to the overall curve based
on the observed exposure distribution
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General limitations of a two-stage approach
» Common study-specific functional relationship (1st stage)

» Information on study-specific exposure range is not considered
(2nd stage)

Consequences
» Poor fit in some of the study-specific dose-response analyses

> Risk of extrapolating predicted relative risks

A point-wise average approach may overcome those limitations
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Paper Il - Point-wise average approach

It consists of
» Estimating study-specific dose-response curves

» Predicting study-specific effects (RRs) for a grid of exposure

values

» Combining study-specific effects

Advantages
» The dose-response analyses may vary across studies

» RR predictions can be limited to study-specific exposure

ranges
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Paper Il - Comparison with IPD meta-analysis

Based on breast cancer patients in the SEER program

(http://seer.cancer.gov/)

Individual patient data Aggregated patient data
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Paper Ill - Comparison with two-stage meta-analysis

Re-analysis of a dose-response meta-analysis between milk and mortality
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Paper IV

One-Stage Dose-Response Meta—Analysis of Aggregated Data

Specific aim
» To describe and implement a one-stage approach for

dose—response meta—analysis of aggregated data
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Paper IV

A one-stage procedure for random—effects meta—analysis of

aggregated dose—response data
» Conceptually easier
» Avoid exclusion of studies with small observations
» More complex curves

> Interaction analysis
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Paper IV — One-stage approach

Conditional meta-regression model

yi = XiB +Xi®Z) v + Xm; +¢& (5
nx1  (nxp)(px1)  (nxp)(1xq)(p-gx1) (nxp)(px1) nx1

Distributional assumptions

gi~ N,(0,X))
n;~ NP (07 w)

Marginal model

Yi~ No (XiB+ (X ©2Z))7y, Zj+ XWX/ ) (6)
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Paper IV

Software implementation is almost complete

(https://github.com/alecri/dosresmeta)

If the study-specific dose-response models are identifiable, the one-

and two-stage approaches are equivalent

Advantages and limitations will be explored re-analyzing

meta-analyses (presenting heterogeneity and meta—regression)
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Summary

> Use of the goodness of fit tools can improve practice of

quantitative reviews

» The proposed measure of heterogeneity, Rp, can facilitate

quantification of the impact of heterogeneity

» The point-wise approach is a flexible tool to evaluate the

impact of heterogeneous exposure distributions

» A one-stage meta-analysis will avoid exclusion of studies with
limited number of RRs and allow more flexibility in

meta-regression models
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