Dose-Response Meta-Analysis of Continuous Outcomes from Aggregated Data

Alessio Crippa^{1,2} Nicola Orsini^{1,2}

http://www.imm.ki.se/biostatistics/ alessio.crippa@ki.se

¹Unit of Nutritional Epidemiology, Karolinska Institutet
²Unit of Biostatistics, Karolinska Institutet

5th Nordic-Baltic Biometric Conference, Reykjavik

Acknowledgments

I would like to thank my co-authors:

- Stefan Leucht
- John Davis
- Nicola Orsini

Outline

Introduction

Methods

Practical Example

Conclusions

Dose-response analysis

Introduction

- How does a (continuous) variable vary as a function of an exposure?
- Dose-specific means and standard deviations
- Improving efficiency in (single investigation) findings
- Inconclusive results
- Meta-analytical methods

- No established methodology
- Davis and Chen. 2004
- Thomas et al. Emay model

Aims

- Propose a new method to pool aggregated dose-response data
- How to flexibly model the dose/exposure
- Illustrate using a real example

Table 1: Notation for aggregated data in the *i*-th study i = 1, ..., I.

dose	$ar{Y}$	sd(Y)	n
0	\bar{Y}_{i0}	sd _{i0}	n _{i0}
:	÷	:	÷
Xij	$ar{Y}_{ij}$	sd_{ij}	n _{ij}
:	<u>:</u>	÷	:
x_{iJ_i}	$ar{Y}_{iJ_i}$	sd_{iJ_i}	n_{iJ_i}

Effect size computation

Mean differences

$$d_{ij} = \bar{Y}_{ij} - \bar{Y}_{i0} \tag{1}$$

$$Var(d_{ij}) = \frac{n_{ij} + n_{i0}}{n_{ii}n_{i0}} s_{p_i}^2$$
 (2)

$$\operatorname{Cov}\left(d_{ij},d_{jj'}\right) = \operatorname{Var}\left(\bar{Y}_{j0}\right) = \frac{s_{i0}^2}{n_{i0}}, \quad j \neq j'$$

dose index $j = 1, \ldots, J_i$

$$s_{p_i}^2 = \sum_{i=0}^{J_i} (n_{ij} - 1) s d_{ii}^2 / \sum_{i=0}^{J_i} (n_{ij} - 1)$$

Effect size computation

Mean differences

$$d_{ij} = \bar{Y}_{ij} - \bar{Y}_{i0} \tag{1}$$

$$Var(d_{ij}) = \frac{n_{ij} + n_{i0}}{n_{ii}n_{i0}} s_{p_i}^2$$
 (2)

$$\mathsf{Cov}\left(d_{ij},d_{jj'}\right) = \mathsf{Var}\left(ar{Y}_{j0}\right) = rac{s_{i0}^2}{n_{i0}}, \quad j
eq j'$$

dose index $i = 1, \ldots, J_i$

$$s_{p_i}^2 = \sum_{i=0}^{J_i} (n_{ij} - 1) \, sd_{ii}^2 / \sum_{i=0}^{J_i} (n_{ij} - 1)$$

Dose-response analysis (1st stage)

$$\mathbf{d}_{i} = f(\mathbf{x}_{i}, \boldsymbol{\theta}_{i}) + \boldsymbol{\varepsilon}_{i}, \quad \boldsymbol{\varepsilon}_{i} \sim N\left(\mathbf{0}, \hat{\boldsymbol{\Sigma}}_{i}\right), \quad i = 1, \dots, I$$
 (3)

- $E_{\rm max}$ model
- Quadratic model
- Splines regression

$$\boldsymbol{d}_{i} = \theta_{1i} \boldsymbol{x}_{i}^{\theta_{3i}} / \left(\theta_{2i} + \boldsymbol{x}_{i}^{\theta_{3i}}\right)$$

$$\mathbf{d}_i = \theta_{1i}\mathbf{x}_i + \theta_{2i}\mathbf{x}_i^2$$

$$\mathbf{d}_i = \theta_{1i} \mathbf{x}_{1i} + \theta_{2i} \mathbf{x}_{2i}$$

$$\hat{\boldsymbol{\theta}}_{i} = \left(\boldsymbol{X}_{i}^{T} \hat{\boldsymbol{\Sigma}}_{i}^{-1} \boldsymbol{X}_{i}\right)^{-1} \boldsymbol{X}_{i}^{T} \hat{\boldsymbol{\Sigma}}_{i}^{-1} \boldsymbol{d}_{i}$$

$$\hat{\boldsymbol{V}}_{i} = \operatorname{Var}\left(\hat{\boldsymbol{\theta}}_{i}\right) = \left(\boldsymbol{X}_{i}^{T} \hat{\boldsymbol{\Sigma}}_{i}^{-1} \boldsymbol{X}_{i}\right)^{-1}$$
(4)

$$d_i = f(\mathbf{x}_i, \boldsymbol{\theta}_i) + \boldsymbol{\varepsilon}_i, \quad \boldsymbol{\varepsilon}_i \sim N(\mathbf{0}, \hat{\boldsymbol{\Sigma}}_i), \quad i = 1, \dots, I$$
 (3)

- E_{max} model
- Quadratic model
- Splines regression

$$oldsymbol{d}_i = heta_{1i} oldsymbol{x}_i^{ heta_{3i}} / \left(heta_{2i} + oldsymbol{x}_i^{ heta_{3i}}
ight)$$

$$\mathbf{d}_i = \theta_{1i} \mathbf{x}_i + \theta_{2i} \mathbf{x}_i^2$$

$$\boldsymbol{d}_i = \theta_{1i} \boldsymbol{x}_{1i} + \theta_{2i} \boldsymbol{x}_{2i}$$

$$\hat{\boldsymbol{\theta}}_{i} = \left(\boldsymbol{X}_{i}^{T} \hat{\boldsymbol{\Sigma}}_{i}^{-1} \boldsymbol{X}_{i}\right)^{-1} \boldsymbol{X}_{i}^{T} \hat{\boldsymbol{\Sigma}}_{i}^{-1} \boldsymbol{d}_{i}$$

$$\hat{\boldsymbol{V}}_{i} = \operatorname{Var}\left(\hat{\boldsymbol{\theta}}_{i}\right) = \left(\boldsymbol{X}_{i}^{T} \hat{\boldsymbol{\Sigma}}_{i}^{-1} \boldsymbol{X}_{i}\right)^{-1} \tag{4}$$

$$\mathbf{d}_{i} = f(\mathbf{x}_{i}, \boldsymbol{\theta}_{i}) + \boldsymbol{\varepsilon}_{i}, \quad \boldsymbol{\varepsilon}_{i} \sim N\left(\mathbf{0}, \hat{\boldsymbol{\Sigma}}_{i}\right), \quad i = 1, \dots, I$$
 (3)

- E_{max} model
- Quadratic model
- Splines regression

$$oldsymbol{d}_i = heta_{1i} oldsymbol{x}_i^{ heta_{3i}} / \left(heta_{2i} + oldsymbol{x}_i^{ heta_{3i}}
ight)$$

$$\boldsymbol{d}_i = \theta_{1i} \boldsymbol{x}_i + \theta_{2i} \boldsymbol{x}_i^2$$

$$\mathbf{d}_i = \theta_{1i} \mathbf{x}_{1i} + \theta_{2i} \mathbf{x}_{2i}$$

$$\hat{\boldsymbol{\theta}}_{i} = \left(\boldsymbol{X}_{i}^{T} \hat{\boldsymbol{\Sigma}}_{i}^{-1} \boldsymbol{X}_{i}\right)^{-1} \boldsymbol{X}_{i}^{T} \hat{\boldsymbol{\Sigma}}_{i}^{-1} \boldsymbol{d}_{i}$$

$$\hat{\boldsymbol{V}}_{i} = \operatorname{Var}\left(\hat{\boldsymbol{\theta}}_{i}\right) = \left(\boldsymbol{X}_{i}^{T} \hat{\boldsymbol{\Sigma}}_{i}^{-1} \boldsymbol{X}_{i}\right)^{-1}$$
(4)

Dose-response analysis (1st stage)

$$\mathbf{d}_{i} = f(\mathbf{x}_{i}, \boldsymbol{\theta}_{i}) + \boldsymbol{\varepsilon}_{i}, \quad \boldsymbol{\varepsilon}_{i} \sim N\left(\mathbf{0}, \hat{\boldsymbol{\Sigma}}_{i}\right), \quad i = 1, \dots, I$$
 (3)

- E_{max} model
- Quadratic model
- Splines regression

- $oldsymbol{d}_i = heta_{1i} oldsymbol{x}_i^{ heta_{3i}} / \left(heta_{2i} + oldsymbol{x}_i^{ heta_{3i}}
 ight)$
- $\boldsymbol{d}_i = \theta_{1i} \boldsymbol{x}_i + \theta_{2i} \boldsymbol{x}_i^2$
- $\boldsymbol{d}_i = \theta_{1i} \boldsymbol{x}_{1i} + \theta_{2i} \boldsymbol{x}_{2i}$

$$\hat{\boldsymbol{\theta}}_{i} = \left(\boldsymbol{X}_{i}^{T} \hat{\boldsymbol{\Sigma}}_{i}^{-1} \boldsymbol{X}_{i}\right)^{-1} \boldsymbol{X}_{i}^{T} \hat{\boldsymbol{\Sigma}}_{i}^{-1} \boldsymbol{d}_{i}$$

$$\hat{\boldsymbol{V}}_{i} = \operatorname{Var}\left(\hat{\boldsymbol{\theta}}_{i}\right) = \left(\boldsymbol{X}_{i}^{T} \hat{\boldsymbol{\Sigma}}_{i}^{-1} \boldsymbol{X}_{i}\right)^{-1}$$
(4)

Dose-response analysis (1st stage)

$$\mathbf{d}_{i} = f(\mathbf{x}_{i}, \boldsymbol{\theta}_{i}) + \boldsymbol{\varepsilon}_{i}, \quad \boldsymbol{\varepsilon}_{i} \sim N\left(\mathbf{0}, \hat{\boldsymbol{\Sigma}}_{i}\right), \quad i = 1, \dots, I$$
 (3)

- E_{max} model
- Quadratic model
- Splines regression

- $oldsymbol{d}_i = heta_{1i} oldsymbol{x}_i^{ heta_{3i}} / \left(heta_{2i} + oldsymbol{x}_i^{ heta_{3i}}
 ight)$
- $\mathbf{d}_i = \theta_{1i}\mathbf{x}_i + \theta_{2i}\mathbf{x}_i^2$
- $\mathbf{d}_i = \theta_1 \mathbf{x}_1 \mathbf{x}_1 + \theta_2 \mathbf{x}_2 \mathbf{x}_2$

$$\hat{\boldsymbol{\theta}}_{i} = \left(\boldsymbol{X}_{i}^{T} \hat{\boldsymbol{\Sigma}}_{i}^{-1} \boldsymbol{X}_{i}\right)^{-1} \boldsymbol{X}_{i}^{T} \hat{\boldsymbol{\Sigma}}_{i}^{-1} \boldsymbol{d}_{i}$$

$$\hat{\boldsymbol{V}}_{i} = \operatorname{Var}\left(\hat{\boldsymbol{\theta}}_{i}\right) = \left(\boldsymbol{X}_{i}^{T} \hat{\boldsymbol{\Sigma}}_{i}^{-1} \boldsymbol{X}_{i}\right)^{-1} \tag{4}$$

Regardless the chosen f

$$\hat{\boldsymbol{\theta}}_i \sim N\left(\boldsymbol{\theta}, \hat{\boldsymbol{V}}_i + \boldsymbol{\Psi}\right)$$
 (5)

- Fixed-effects model ($\Psi = 0$)
- Cochran's Q test and I²
- Random-effects model (θ_i vary across studies)
- REML estimation $\hat{ heta}$

Dose-findings

$$\hat{d} = f\left(\boldsymbol{X}, \hat{\boldsymbol{\theta}}\right) \tag{6}$$

$$\hat{d} \mp z_{\frac{\alpha}{2}} \sqrt{\operatorname{diag}\left(f\left(\boldsymbol{X}, \hat{\boldsymbol{\theta}}\right)^{T} \operatorname{Cov}\left(\hat{\boldsymbol{\theta}}\right) f\left(\boldsymbol{X}, \hat{\boldsymbol{\theta}}\right)\right)}$$
(7)

Target doses (ED_γ) which produces $\gamma\%$ of the maximum predicted response

$$\widehat{ED}_{\gamma} = \underset{x \in (0, x_{\text{max}}]}{\operatorname{argmax}} \left\{ \frac{\widehat{md}_{x}}{\widehat{md}_{x_{\text{max}}}} \ge \gamma \right\}$$
(8)

Confidence intervals by parametric bootstrap resampling

Methods

Dose-findings

$$\hat{d} = f\left(\boldsymbol{X}, \hat{\boldsymbol{\theta}}\right) \tag{6}$$

$$\hat{d} \mp z_{\frac{\alpha}{2}} \sqrt{\operatorname{diag}\left(f\left(\boldsymbol{X}, \boldsymbol{\hat{\theta}}\right)^{T} \operatorname{Cov}\left(\boldsymbol{\hat{\theta}}\right) f\left(\boldsymbol{X}, \boldsymbol{\hat{\theta}}\right)\right)}$$
(7)

Target doses (ED_{γ}) which produces $\gamma\%$ of the maximum predicted response

$$\widehat{\mathrm{ED}}_{\gamma} = \underset{\mathsf{x} \in (0, \mathsf{x}_{\mathsf{max}}]}{\mathsf{argmax}} \left\{ \frac{\widehat{md}_{\mathsf{x}}}{\widehat{md}_{\mathsf{x}_{\mathsf{max}}}} \ge \gamma \right\} \tag{8}$$

Confidence intervals by parametric bootstrap resampling

Working example

Table 2: Dose-response data for three of five clinical trials investigating effectiveness of aripiprazole (PANNS) in schizoaffective patients.

ID	Author, Year	dose	\bar{Y}	sd(Y)	n	d	Var(d)
1	Cutler, 2006	0	5.300	18.310	85	0.000	0.000
		2	8.230	18.320	92	2.930	7.593
		5	10.600	18.310	89	5.300	7.715
		10	11.300	18.320	94	6.000	7.515
2	McEvoy, 2007	0	2.330	26.100	107	0.000	0.000
		10	15.040	27.600	103	12.710	13.344
		15	11.730	26.200	103	9.400	13.344
		20	14.440	25.900	97	12.110	13.764
3	Kane, 2002	0	2.900	24.280	102	0.000	0.000
		15	15.500	26.490	99	12.600	12.038
		30	11.400	22.900	100	8.500	11.977

Mean differences

$$\mathbf{d_1} = (2.93, 5.30, 6.00)^{\top}$$

$$\mathsf{Cov}(\mathbf{d_1}) = \begin{bmatrix} 7.59 \\ 3.94 & 7.72 \\ 3.94 & 3.94 & 7.52 \end{bmatrix}$$

Practical Example

 $f={
m restricted}$ cubic spline model with knots located at 0, 10, and 30 mg/day

$$\hat{\boldsymbol{\theta}}_1 = (1.215, -5.738)^T$$

$$\hat{\boldsymbol{V}}_1 = \text{Cov}\left(\hat{\boldsymbol{\theta}}_1\right) = \begin{bmatrix} 0.49 \\ -3.65 & 31.64 \end{bmatrix}$$

Mean differences

$$\mathbf{d_1} = (2.93, 5.30, 6.00)^{\top}$$

$$\mathsf{Cov}(\mathbf{d_1}) = \begin{bmatrix} 7.59 \\ 3.94 & 7.72 \\ 3.94 & 3.94 & 7.52 \end{bmatrix}$$

f = restricted cubic spline model with knots located at 0, 10, and 30mg/day

$$\hat{\boldsymbol{\theta}}_1 = (1.215, -5.738)^T$$
 $\hat{\boldsymbol{V}}_1 = \text{Cov}\left(\hat{\boldsymbol{\theta}}_1\right) = \begin{bmatrix} 0.49 \\ -3.65 & 31.64 \end{bmatrix}$

Figure 1: Study-specific predicted dose-response curves and modeled data.

Meta-analysis

Table 3: Study-specific dose-response coefficients and corresponding covariances.

ID	$\hat{ heta}_1$	$\hat{ heta}_2$	$Var\left(\hat{ heta}_1 ight)$	$Cov\left(\hat{ heta}_1,\hat{ heta}_2 ight)$	$Var\left(\hat{ heta}_2 ight)$
1	1.22	-5.74	0.49	-3.65	31.64
2	1.26	-2.00	0.19	-0.48	1.43
3	1.25	-1.74	0.14	-0.22	0.40
4	0.81	-0.92	0.13	-0.23	0.44
5	0.93	-1.01	0.36	-0.58	1.02

$$\hat{\boldsymbol{\theta}} = (0.937, -1.156)^{T}$$

$$\widehat{\mathsf{Cov}}\left(\hat{\boldsymbol{\theta}}\right) = \begin{bmatrix} 0.03 \\ -0.05 & 0.10 \end{bmatrix}$$

Meta-analysis

Table 3: Study-specific dose-response coefficients and corresponding covariances.

ID	$\hat{ heta}_1$	$\hat{ heta}_2$	$Var\left(\hat{ heta}_1 ight)$	$Cov\left(\hat{ heta}_1,\hat{ heta}_2 ight)$	$Var\left(\hat{ heta}_2 ight)$
1	1.22	-5.74	0.49	-3.65	31.64
2	1.26	-2.00	0.19	-0.48	1.43
3	1.25	-1.74	0.14	-0.22	0.40
4	0.81	-0.92	0.13	-0.23	0.44
5	0.93	-1.01	0.36	-0.58	1.02

REML pooled estimates

$$\hat{\boldsymbol{\theta}} = (0.937, -1.156)^{T}$$

$$\widehat{\mathsf{Cov}}\left(\hat{\boldsymbol{\theta}}\right) = \begin{bmatrix} 0.03 \\ -0.05 & 0.10 \end{bmatrix}$$

Figure 2: Pooled predicted dose-response curve.

- non-linear association $(p \le 0.001)$
- E_{max} 10.39 (95% CI 7.48, 13.30) at $x_{\text{max}} = 19.32 \text{ mg/day}$
- no change after 20 mg/day
- $\widehat{\mathrm{ED}}_{80} = 10.43 \text{ mg/day (95\% CI: } 9.02, 16.73)$
- no heterogeneity (Q = 3.505, p = 0.9)

Figure 2: Pooled predicted dose-response curve.

- non-linear association (p < 0.001)
- E_{max} 10.39 (95% CI 7.48, 13.30) at $x_{\text{max}} = 19.32 \text{ mg/day}$
- no change after 20 mg/day
- $\widehat{\mathrm{ED}}_{80} = 10.43 \text{ mg/day (95\% CI: 9.02, 16.73)}$
- no heterogeneity (Q = 3.505, p = 0.9)

Figure 2: Pooled predicted dose-response curve.

non-linear association (p < 0.001)

Practical Example

- E_{max} 10.39 (95% CI 7.48, 13.30) at $x_{\text{max}} = 19.32 \text{ mg/day}$
- no change after 20 mg/day
- $\dot{E}\dot{D}_{80} = 10.43 \text{ mg/day (95\% CI: 9.02, 16.73)}$
- no neterogeneity (Q = 3.505, p = 0.9)

Figure 2: Pooled predicted dose-response curve.

non-linear association (p < 0.001)

Practical Example

- E_{max} 10.39 (95% CI 7.48, 13.30) at $x_{\text{max}} = 19.32 \text{ mg/day}$
- no change after 20 mg/day
- $\hat{E}\hat{D}_{80} = 10.43 \text{ mg/day } (95\% \text{ CI: } 9.02, 16.73)$
- no heterogeneity (Q = 3.505, p = 0.9)

Sensitivity analysis

Figure 3: Graphical sensitivity analysis.

Left panel: different location of the three knots.

Right panel: alternative models.

Conclusions

- Two-stage procedure
- Variety of dose-response models
- Spline regression
- Extension to observational studies
- Method implemented in dosresmeta R package

References

- Bretz F. et al "Combining Multiple Comparisons and Modeling Techniques in Dose-Response Studies." Biometrics 2005
- Davis et al. "Dose response and dose equivalence of antipsychotics." Journal of clinical psychopharmacology 2004
- Desquilbet L. et al. "Dose-response analyses using restricted cubic spline functions in public health research." Statistics in medicine 2010
- Gasparrini, A. et al. "Multivariate meta-analysis for non-linear and other multi-parameter associations." Statistics in Medicine 2012.