A new measure of between-studies heterogeneity in meta-analysis

Alessio Crippa,1 Polyna Khudyakov,2 Molin Wang,2,3 Nicola Orsini,1 Donna Spiegelman2,3
1Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden
2Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
3Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA

Conclusions

• We recommend the use of R_b, as the preferred measure for quantifying the impact of heterogeneity
• Its validity does not require the specification of a σ^2 term
• R_b can be interpreted as the proportion of the variance of the pooled random effect estimate due to between-studies heterogeneity
• The proposed measure is implemented in the dosresmeta R package and %metaanal SAS macro

Introduction

Measures of heterogeneity, I^2 and R_b, relates the heterogeneity, τ^2, to the total variance of the effect estimate, $\tau^2 + \sigma^2$, where σ^2 is a summary of the observed within-study error variances, ν_i. The latter term, however, may substantially vary across studies (Table I). A measure that relaxes the hypothesis of homogeneity of within-studies variances is desirable.

Aims

To propose a new measure of heterogeneity, R_b, which does not depend upon the definition of σ^2. Performances of the proposed measure are evaluated through simulations studies.

A new measure of heterogeneity, R_b

The new measure quantifies the contribution of τ^2 relative to the variance of the pooled random-effects estimate, $\hat{\beta}_{re}$:

$$R_b = \frac{\hat{\tau}^2}{K \hat{V}ar(\hat{\beta}_{re})} = \frac{1}{K} \sum_{i=1}^{K} \frac{\hat{\tau}^2}{\nu_i + \hat{\tau}^2}$$

K equal to the number of studies and $\hat{\tau}^2$ being the moment based estimate of heterogeneity. R_b satisfies the properties for a measure of heterogeneity. R_b is a consistent and asymptotically normal distributed estimator. It coincides with I^2 and R_I when $\nu_i = 0, \forall i = 1, ..., K$

Table I. Example of two hypothetical meta-analyses of 10 studies

<table>
<thead>
<tr>
<th>Author, Year</th>
<th>Effect Size</th>
<th>p Value for Q test</th>
<th>CV_{ν_i}</th>
<th>$\sigma^2 (I^2)$</th>
<th>$\sigma^2 (R_I)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gibson, 2002</td>
<td>SMD</td>
<td>0.008</td>
<td>0.67</td>
<td>51 (17, 85)</td>
<td>56 (19, 94)</td>
</tr>
<tr>
<td>Codd, 1994</td>
<td>logRR</td>
<td>0.001</td>
<td>1.14</td>
<td>74 (53, 96)</td>
<td>94 (85, 100)</td>
</tr>
<tr>
<td>Millett, 2008</td>
<td>LogOR</td>
<td>0.05</td>
<td>0.53</td>
<td>1.78</td>
<td>77 (44, 100)</td>
</tr>
</tbody>
</table>

Table II. Heterogeneity assessment in a re-analysis of 3 meta-analyses

Simulation study

Different scenario simulations: true heterogeneity measure = 0.1, 0.5, 0.7; effect size $\beta_{re} = 1, 2, 4$; coefficient of variation of ν_i, $CV_{\nu_i} = 0.5, 1, 2$; coefficient of variation of $\hat{\beta}_{re}$, $CV_{\hat{\beta}} = 1, 3$; $K = 5, 20, 50, 100$.

• No specific pattern in the bias for R_b according to CV_{ν_i} and $CV_{\hat{\beta}}$ values
• I^2 and R_I overestimated the impact of heterogeneity
• The coverage was good for confidence intervals based upon R_b
• Bias and coverage for I^2 and R_I worsened as CV_{ν_i} increased

Figure 1. Percent relative bias for R_b, I^2 and R_I as a function of within-study variances (CV_{ν_i}) for simulated meta-analyses of ($K = 50$ and true heterogeneity = 0.5) studies, averaged over different values of between-studies coefficient of variations (CV_{ν_b}).