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Summary recap Binary predictor Continuous predictor Categorical predictor

For a binary outcome Y , we considered two absolute measures (of
disease occurrence):
- p the probability (E [Y ])
- the odds (E [Y ]/(1− E [Y ]))

If we want to relate the outcome Y with a binary predictor X we
considered two relative measures (of association):
- RR the relative risk (p1/p0)
- the OR odds ratio (odds1/odds0)

What were the corresponding measures in linear regression?

Crippa Alessio
3



Summary recap Binary predictor Continuous predictor Categorical predictor

The linearity assumption between the probability P(Y |X ) and X is
most often not appropriate.

We assume a logistic function to describe an S-shaped relation

logistic(x) = ex

1+ex

The empty model to estimate the odds or probability
P(Y ) = exp(β0)

1+exp(β0)

log (odds(Y )) = β0
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Summary recap Binary predictor Continuous predictor Categorical predictor

Binary predictor

We want to relate the probability of the outcome Y to a binary
predictor X , i.e. we want to test if the probability of the outcome is
different in the two groups defined by X (X = 1 vs X = 0)

logit (P[Y |X ]) = log (odds(Y |X )) = β0 + β1X

Or alternatively

P (Y |X ) = exp(β0 + β1X )
1 + exp(β0 + β1X )

Crippa Alessio
6



Summary recap Binary predictor Continuous predictor Categorical predictor

The model assumes that the log odds of the outcome linearly
depends on X.

Or alternatively, that the probability of the outcome depends of X
following a logistic function.

In general, all the modeling techniques apply to the linear model
(log odds), while the results will be most often presented in terms of
odds (or probability) and odds ratios (or risk ratio).
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Summary recap Binary predictor Continuous predictor Categorical predictor

Interpretation

log (odds(Y |X )) = β0 + β1X

β0 is the log odds of the outcome when X = 0.

What about β1?

β1 = log (odds(Y |X = 1))− log (odds(Y |X = 0)) =

log
(odds(Y = 1|X = 1)
odds(Y = 1|X = 0)

)
= log(OR)

β1 is the the log odds ratio of the outcome comparing X = 1
vs. X = 0.
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Summary recap Binary predictor Continuous predictor Categorical predictor

Interpretation of model coefficients is more informative on the
exponential scale.

exp(β0) is the odds of the outcome when X = 0.

exp(β1) is the odds ratio of the outcome comparing X = 1
vs. X = 0.
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Summary recap Binary predictor Continuous predictor Categorical predictor

Question: Is sex (female) a predictor of (the risk of)
hyponatremia (nas135)?
Or, is the risk of hyponatremia different between men and women?

log (odds(nas135|female)) = β0 + β1female
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Summary recap Binary predictor Continuous predictor Categorical predictor

Estimation
We can use maximum likelihood to estimate the β coefficients.

Y ∼ Bernoulli(p(x)), p(x) = P(Y |X = x).
The likelihood is defined as

L (p|y , x) =
n∏

i=1
p(xi)yi (1− p(xi))1−yi

or alternatively the log-likelihood

` (p|y , x) =
n∑

i=1
yi log(p(xi)) + (1− yi) log(1− p(xi))
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Summary recap Binary predictor Continuous predictor Categorical predictor

p(xi) = exp(β0 + β1xi)
1 + exp(β0 + β1xi)

so the log-likelihood becomes

` (β|y , x) =∑n
i=1 yi log

(
exp(β0+β1xi )

1+exp(β0+β1xi )

)
+ (1− yi) log

(
1− exp(β0+β1xi )

1+exp(β0+β1xi )

)
The β̂0 and β̂1 which maximizes ` (β|y , x) can be obtained using
iterative algorithms (there is no close formula).
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Summary recap Binary predictor Continuous predictor Categorical predictor

Properties of MLE
The MLE B̂ has the following nice properties:
1. Consistency: the distributions of the estimators become more and
more concentrated near the true value of the parameter being
estimated.
2. Asymptotically normal: B̂ ∼ N(β,Var(B̂))
3. Asymptotic optimality: MLE has the smallest asymptotic
variance and we say that the MLE is asymptotically efficient.
4. Invariance property: the maximum likelihood estimate of a
function of the parameter being estimated (τ = g(β)) is the
function evaluated at the maximum likelihood estimate of the
parameter (τ̂ = g(β̂))

Crippa Alessio
13



Summary recap Binary predictor Continuous predictor Categorical predictor

Hypothesis testing
If sex is not associated with (risk of) hyponatremia, it means that
p1 = p0, and thus odds1 = odds0. In this case, the OR will be 1.

The null hypothesis of no association between sex and (risk of)
hyponatremia can be written as H0 : β1 = 0 (if β1 = log(OR) = 0,
in means that OR = 1).

Based on large sample, the distribution of betas is approximately
normal and Z test can be adopted.

Z = β̂1 − 0
SE(β̂1)

which, under the null hypothesis, follows a standard normal
distribution.
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Summary recap Binary predictor Continuous predictor Categorical predictor

Confidence intervals for the OR

95% confidence intervals are first defined on the log scale (i.e. for
the log(OR))

β̂1 ± 1.96 · SE(β̂1)

and are exponentiated to obtain the corresponding confidence
intervals for the OR (invariance property)

exp
(
β̂1 ± 1.96 · SE(β̂1)

)
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Summary recap Binary predictor Continuous predictor Categorical predictor

mod <- glm(nas135 ~ female, data = marathon, family = "binomial")
summary(mod)

Call:
glm(formula = nas135 ~ female, family = "binomial", data = marathon)

Deviance Residuals:
Min 1Q Median 3Q Max

-0.7102 -0.7102 -0.4020 -0.4020 2.2608

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.4749 0.2082 -11.884 < 2e-16
femalefemale 1.2260 0.2795 4.386 0.0000116

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 371.60 on 487 degrees of freedom
Residual deviance: 351.93 on 486 degrees of freedom
AIC: 355.93

Number of Fisher Scoring iterations: 5
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Summary recap Binary predictor Continuous predictor Categorical predictor

Interpretation
Alternative ways:
- the log odds of hyponatremia for male runners is −2.47;
- the odds of hyponatremia is 0.08 (8 cases for every 100 non-cases)
among men;
- the log odds ratio of hyponatremia comparing female vs male
runners is 1.23;
- the odds ratio of hyponatremia comparing female vs male runners
is 3.41;
- the odds of hyponatremia among women is 3.41 times the odds for
men;
- you multiply by 3.41 the odds of hyponatremia among male (0.08)
to get the one among female (−1.24).
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Summary recap Binary predictor Continuous predictor Categorical predictor

The 95% CI for the log(OR) is calculated as
1.23± 1.96 · 0.28 = (0.68, 1.77)

The 95% CI for the OR is calculated as
exp(0.68, 1.77) = (1.97, 5.87)

The odds of hyponatremia among women was significantly higher
than men (OR = 3.41).
We are 95% confident that the odds ratio relating sex (being woman
compared to man) to hyponatremia is between 1.97 and 5.87.
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Summary recap Binary predictor Continuous predictor Categorical predictor

The multiplicative model

The logistic model is a linear model in terms of the log odds
log(odds(Y |X )) = β0 + β1

If we take the exponential, we can write the previous model as a
multiplicative model in terms of the odds
exp (log(odds(Y |X ))) = odds(Y |X ) = exp (β0 + β1) =
exp(β0) exp(β1) = odds(Y |X = 0) · ORx=1vsx=0

What is the odds of hyponatremia among men? exp(β̂0) = 0.08

What is the odds of hyponatremia among women?
exp(β̂0) · exp(β̂1) = 0.08 · 3.41 = 0.27
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Summary recap Binary predictor Continuous predictor Categorical predictor

Linear function of regression coefficients

Question: What is the odds of hyponatremia among women?

Coefficients:
b0 b1

-2.475 1.226

Covariance matrix:
b0 b1

b0 0.043 -0.043
b1 -0.043 0.078
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Summary recap Binary predictor Continuous predictor Categorical predictor

Let’s first calculate the 95% CI for the log odds
êst = log(odds(Y |X = 1)) = β̂0 + β̂1 = −2.47 + (1.23) = −1.249

Var
(
êst
)

= Var(β̂0) + Var(β̂1) + 2Cov(β̂0, β̂1) =
0.043 + 0.078 + 2(−0.043) = 0.035

95% confidence interval for êst is
êst± 1.96

√
Var

(
êst
)

= (−1.616,−0.882)
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Summary recap Binary predictor Continuous predictor Categorical predictor

Now we can exponentiate both the point estimate and the
confidence interval:

exp
(
β̂0 + β̂1

)
= 0.29

95% confidence interval for odds(Y |X = 1) is
exp (−1.616,−0.882) = (0.199, 0.414)

The odds of hyponatremia is 0.29 (29 cases for every 100 non-cases)
among women (95% CI: 0.199, 0.414).
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Summary recap Binary predictor Continuous predictor Categorical predictor

Predicted probabilities

Once the β coefficients have been estimated it is possible to
calculate the predicted probabilities of the outcome for any
covariate values (covariate pattern).

What is the estimated probability of hyponatremia among male
female?

P(Y = 1|X = 0) = invlogit(β0) = exp(−2.47)
1+exp(−2.47) = 0.08

1+0.08 = 0.078

P(Y = 1|X = 1) = invlogit(β0 + β1) = exp(−2.47+1.23)
1+exp(−2.47+1.23) =

0.29
1+0.29 = 0.224
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Summary recap Binary predictor Continuous predictor Categorical predictor

The 95% CI for the predicted probabilities can be obtained as the
invlogit of the 95% CI for the corresponding log odds

95% CI for log(odds(Y |X = 0)) (–> β̂0)
β̂0 ± z0.975SE(β̂0) = −2.47± 1.96

√
0.04 = (−2.86,−2.08)

95% CI for P(Y |X = 0)(
exp(−2.86)

1+exp(−2.86) ,
exp(−2.08)

1+exp(−2.08)

)
= (0.05, 0.11)
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Summary recap Binary predictor Continuous predictor Categorical predictor

b0 b1
b0 0.04 -0.04
b1 -0.04 0.08

95% CI for log(odds(Y |X = 1)) (–>β̂0 + β̂1)
Var(β0 + β1) = Var(β̂0) + Var(β̂1) + 2Cov(β̂0, β̂1) =
0.04 + 0.08 + 2(−0.04) = 0.04

(β̂0 + β̂1)± z0.975SE(β̂0 + β̂1) = −1.24± 1.96
√
0.04 = (−1.63,−0.85)

95% CI for P(Y |X = 1)(
exp(−1.63)

1+exp(−1.63) ,
exp(−0.85)

1+exp(−0.85)

)
= (0.16, 0.3)
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Summary recap Binary predictor Continuous predictor Categorical predictor

Predicted response

X odds p OR RR
0 exp(β0) invlogit(β0) ref ref
1 exp(β0 + β1) invlogit(β0 + β1) exp(β1) p1/p0

X odds p OR RR
male 0.08 0.078 ref ref
female 0.27 0.224 3.41 2.878
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Summary recap Binary predictor Continuous predictor Categorical predictor

Graphical presentation of predicted probabilities
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Summary recap Binary predictor Continuous predictor Categorical predictor

The logistic regression model estimated above with a binary
covariate (female) is called saturated because the number of
possible combination of covariate patterns (male, female) is equal to
the number of parameters estimated.

cases non-cases female

25 297 male
37 129 female
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Summary recap Binary predictor Continuous predictor Categorical predictor

The consequence is that the fitted values from the saturated model
will exactly fit the observed data. No model is more complicated
than that.

cases non-cases female p obs p pred

25 297 male 0.0776398 0.0776398
37 129 female 0.2228916 0.2228916
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Continuous predictor
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Summary recap Binary predictor Continuous predictor Categorical predictor

We want know to related the probability of the outcome Y to a
continuous predictor X .

Question: is weight change (wtdiff) a predictor of the (risk of)
hyponatremia (nas135)?

Or alternatively, does the risk oh hyponatremia vary as a function of
weight change? if yes, how does it vary?

log (odds(nas135|wtdiff)) = β0 + β1wtdiff

NB: we assume that the log odds of hyponatremia linearly varies as
a function of weight change.
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Summary recap Binary predictor Continuous predictor Categorical predictor
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Summary recap Binary predictor Continuous predictor Categorical predictor

mod <- glm(nas135 ~ wtdiff, data = marathon, family = "binomial")
summary(mod)

Call:
glm(formula = nas135 ~ wtdiff, family = "binomial", data = marathon)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.6634 -0.5317 -0.3584 -0.2332 2.7314

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.8850 0.1587 -11.880 < 2e-16
wtdiff 0.7284 0.1103 6.603 4.02e-11

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 343.35 on 454 degrees of freedom
Residual deviance: 288.94 on 453 degrees of freedom

(33 observations deleted due to missingness)
AIC: 292.94

Number of Fisher Scoring iterations: 5
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Summary recap Binary predictor Continuous predictor Categorical predictor

Interpretation

exp(β0) = 0.15 is the odds of hyponatremia for those runner who
did not change weight.

log (odds(Y |X = x + 1))− log (odds(Y |X = x)) =
log
(

odds(Y =1|X=x+1)
odds(Y =1|X=x)

)
= log(OR) = β0 +β1(x +1)−β0−β1x = β1

Every one-unit increase in X , the log(OR) increases/decreases by β1.
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Summary recap Binary predictor Continuous predictor Categorical predictor

More in general, the log odds of the outcome for any two values of
X (x1 vs x2) are
log (odds(Y |X = x1)) = β0 + β1x1

log (odds(Y |X = x2)) = β0 + β1x2

log (odds(Y |X = x1))− log (odds(Y |X = x2)) = log(ORx1 vs x2) =
β1(x1 − x2)
is the log OR associated with a (x1 − x2) change in X .
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Summary recap Binary predictor Continuous predictor Categorical predictor

The odds ratio can be obtained exponentiating the log OR

OR = exp(β1(x1 − x2))

That is the OR comparing the sub-population having x1 vs. x2 of
the quantitative covariate X .
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Summary recap Binary predictor Continuous predictor Categorical predictor

NB: The log(odds) is a linear function of the beta coefficients. In
that sense, every one-unit change in X is associate with an increase
in the log OR equal to β1.

log(odds(Y |x + 1)) = log(odds(Y |X )) + β1

The odds can be obtained by exponentiating the log odds. On the
odds scale, the odds for every unit change in X can be obtained by
multiplying the baseline odds by exp(β1)

odds(Y |x + 1) = odds(Y |x) exp(β1)
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Summary recap Binary predictor Continuous predictor Categorical predictor

Change in the (log) odds
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Summary recap Binary predictor Continuous predictor Categorical predictor

Every one kg increase in weight change is associated with a
β̂1 = 0.73 increase in the log odds of hyponatremia.

Alternatively, the odds of hyponatremia doubles (exp(β̂1) = 2.08)
for every one kg increase in weight change.

If exp(β1) > 1, we usually interpret as (exp(β1)− 1)% increase in
odds for every one-unit increase in x .
If 0 < exp(β1) < 1, we usually interpret as (1− exp(β1))%
reduction in odds for every one-unit increase in x .
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Summary recap Binary predictor Continuous predictor Categorical predictor

Constancy of the odds ratio

wtdiff p odds rr or
-4 0.00817 0.00824 NA NA
-3 0.01679 0.01707 2.05379 2.07178
-2 0.03416 0.03537 2.03517 2.07178
-1 0.06828 0.07328 1.99860 2.07178
0 0.13181 0.15182 1.93051 2.07178
1 0.23928 0.31455 1.81532 2.07178
2 0.39455 0.65167 1.64891 2.07178
3 0.57449 1.35012 1.45605 2.07178
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Summary recap Binary predictor Continuous predictor Categorical predictor

Confidence intervals for OR

êst = log(OR) = β1(x1 − x2)

Var(êst) = Var(β1(x1 − x2)) = (x1 − x2)2Var(β1)

95% CI for log odds ratio
êst± z0.975

√
Var(êst)

95% CI for odds ratio (invariance property)
exp

(
êst± z0.975

√
Var(êst)

)
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Summary recap Binary predictor Continuous predictor Categorical predictor

Question: What is the odds ratio of hyponatremia comparing those
who increased 2 kg as compared to those who lost 1 kg?

Coefficients:

b0 b1
-1.885 0.728

Covariance matrix:
b0 b1

b0 0.025 -0.005
b1 -0.005 0.012
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Summary recap Binary predictor Continuous predictor Categorical predictor

êst = β̂1(x1 − x2) = 0.73(3) = 2.19

Var(êst) = Var(3β̂1) = 9 · Var(β̂1) = 9 · 0.012 = 0.11

SE(êst) =
√
Var(êst) =

√
(0.11) = 0.329

95% CI for log OR
2.19± z0.975 × 0.329 = (1.55, 2.83)

OR = exp(3β̂1) = 8.94

95% CI for OR
exp(1.55, 2.83) = (4.69, 17.03)

The odds of hyponatremia among those who increased 2 kg was 9
(95% CI 4.69, 17.03) times the odds for those runners who lost 1kg.
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Summary recap Binary predictor Continuous predictor Categorical predictor

Graphical presentation (odds)
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Summary recap Binary predictor Continuous predictor Categorical predictor

Graphical presentation (odds ratio)
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Summary recap Binary predictor Continuous predictor Categorical predictor

Question: What is the risk of hyponatremia for those runners who
gained 1 kg during the race?

êst = log (odds(nas135|wtdiff = 1)) = β̂0 + β̂1 =
−1.885 + 0.728 = −1.157

Var
(
êst
)

= Var(β̂0 + β̂1) = Var(β̂1) + Var(β̂2) + 2Cov(β̂1, β̂2) =
0.0122 + 0.0122 + 2 · (−0.0047) = 0.015

Covariance matrix:
b0 b1

b0 0.025 -0.005
b1 -0.005 0.012
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Summary recap Binary predictor Continuous predictor Categorical predictor

95% CI for log odds
−1.157± 1.96×

√
0.015 = (−1.397,−0.917)

P(nas135 = 1|wtdiff = 1) = exp(β0+β1)
1+exp(β0+β1) = exp(−1.157)

1+exp(−1.157) =
0.2392

95% CI for P(Y |X = 1) is the invlogit of the 95% CI for
logit(P(Y |X = 1))( exp(−1.397)

1 + exp(−1.397) ,
exp(−0.917)

1 + exp(−0.917)

)
= (0.198, 0.286)
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Summary recap Binary predictor Continuous predictor Categorical predictor

Predicted response

wtdiff p odds rr or
-4 0.008 0.008 0.062 0.054
-3 0.017 0.017 0.127 0.112
-2 0.034 0.035 0.259 0.233
-1 0.068 0.073 0.518 0.483
0 0.132 0.152 1.000 1.000
1 0.239 0.315 1.815 2.072
2 0.395 0.652 2.993 4.292
3 0.574 1.350 4.358 8.893
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Summary recap Binary predictor Continuous predictor Categorical predictor

Graphical presentation (probability)
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Summary recap Binary predictor Continuous predictor Categorical predictor

It would help to compare the predicted probabilities with the
observed ones. But we only observe 0/1
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Summary recap Binary predictor Continuous predictor Categorical predictor

We can divide the continuous X in k (e.g. 10) categories and
calculate the proportion of the outcome.
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Summary recap Binary predictor Continuous predictor Categorical predictor

Categorical predictor
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Summary recap Binary predictor Continuous predictor Categorical predictor

The logistic regression model for a binary predictor X can be
generalized to a categorical predictor with k levels (as in linear
regression).

Creating a categorical variable from a continuous predictor can be a
strategy to avoid the linearity assumption between the log odds of
Y and X (but making another assumption).

Question: are categories of weight change (wtdiffc) associated
with risk of hyponatremia (nas135)?

Crippa Alessio
53



Summary recap Binary predictor Continuous predictor Categorical predictor

A descriptive table of data (cases/non-cases) can be easily
presented.
--------------------------------------------------------------------

-------------------------wtdiffc-------------------------
nas135 3.0 to 2.0 to 1.0 to 0.0 to -1.0 to -2.0 to -5.0 to

4.9 2.9 1.9 0.9 -0.1 -1.1 -2.1
--------------------------------------------------------------------
na > 135 2 9 28 78 100 93 83

28.6 56.2 71.8 81.2 91.7 93.9 98.8

na <= 135 5 7 11 18 9 6 1
71.4 43.8 28.2 18.8 8.3 6.1 1.2

--------------------------------------------------------------------

What test can be used to test the association between weight
change and hyponatremia (without specifying a model)?
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Summary recap Binary predictor Continuous predictor Categorical predictor

wtdiffc_nl
nas135 1 2 3 4 5 6 7

na > 135 2 9 28 78 100 93 83
na <= 135 5 7 11 18 9 6 1

Odds ratio 1 0.33 0.16 0.1 0.04 0.03 0.01
lower 95% CI 0.02 0.01 0.01 0 0 0
upper 95% CI 2.79 1.19 0.64 0.27 0.21 0.08

Chi-squared = 63.37 , 6 d.f., P value = 0

There is evidence of association between weight change and risk of
hyponatremia.
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Summary recap Binary predictor Continuous predictor Categorical predictor

Indicator variables

Categorical variables with more than two levels are included in the
regression model using indicator/dummy variables.

The indicator variable omitted from the model identifies the
reference or baseline group.

log (odds(nas135|wtdiff)) = β0 + β1wtdiffc1 + · · ·+ β6wtdiffc6
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mod_cat <- glm(nas135 ~ relevel(wtdiffc, 5), data = marathon, family = "binomial")
summary(mod_cat)

Call:
glm(formula = nas135 ~ relevel(wtdiffc, 5), family = "binomial",

data = marathon)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.5829 -0.6444 -0.3536 -0.1548 2.9769

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.4079 0.3480 -6.919 4.54e-12
relevel(wtdiffc, 5)3.0 to 4.9 3.3242 0.9062 3.669 0.000244
relevel(wtdiffc, 5)2.0 to 2.9 2.1566 0.6124 3.521 0.000429
relevel(wtdiffc, 5)1.0 to 1.9 1.4736 0.4977 2.961 0.003069
relevel(wtdiffc, 5)0.0 to 0.9 0.9416 0.4353 2.163 0.030532
relevel(wtdiffc, 5)-2.0 to -1.1 -0.3329 0.5464 -0.609 0.542343
relevel(wtdiffc, 5)-5.0 to -2.1 -2.0109 1.0645 -1.889 0.058884

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 342.00 on 449 degrees of freedom
Residual deviance: 287.61 on 443 degrees of freedom

(38 observations deleted due to missingness)
AIC: 301.61

Number of Fisher Scoring iterations: 7Crippa Alessio
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Hypothesis testing

To test if there is an association between the categorical predictor
and the risk of outcome, we need to test
H0 : β1 = β2 = · · · = β6 = 0

In other words, we need to compare the model with the dummy
variables for wtdiffc with the nested empty model (with no
dummy variables).

Two models are nested because are estimated on the same number
of subjects but different number of parameters in the model.
It means that you can obtain the restricted model from the full
model by putting constraints on the parameters you want to test.
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Likelihood Ratio Test
The likelihood ratio test is a general procedure to compare the
log-likelihoods (or deviances) of two nested models fitted on the
same data.

LRT = 2 · | log(LR)− log(LU)|

where log(LR) and log(LU) are the log-likelihood of the restricted
and unrestricted model, respectively.

Unrestricted model
log(odds(Y |X1, . . . ,X6)) = β0 + β1X1 + · · ·+ β6X6

Restricted model
log(odds(Y |X1, . . . ,X6)) = β0
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Under the null hypothesis (assuming the restricted model is true),
the likelihood ratio test follows a χ2 (chi-square) distribution with
degrees of freedom equal to the difference in the number of
parameters of the two models being compared.

The two log-likelihood are -143.805 and -171. The likelihood ratio
test is given by

LRT = 2 · | − 143.805− (−171)| = 54.39
mod_0 <- glm(nas135 ~ 1, family = "binomial",

data = subset(marathon, !is.na(wtdiffc)))
lrtest(mod_cat, mod_0)

Likelihood ratio test for MLE method
Chi-squared 6 d.f. = 54.39069 , P value = 6.15293e-10
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The p-value associated with the LRT is very small (p < 0.01).
There is evidence of association between categories of weight
change and the risk of hyponatremia (p < 0.01).

To test which category of weight change is associated with a
statistical significant higher risk, we look at the z test.
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Interpretation

exp(Est.) 2.5% 97.5%
(Intercept) 0.090 0.046 0.178
3.0 to 4.9 27.778 4.703 164.065
2.0 to 2.9 8.642 2.602 28.703
1.0 to 1.9 4.365 1.646 11.579
0.0 to 0.9 2.564 1.092 6.018
-2.0 to -1.1 0.717 0.246 2.092
-5.0 to -2.1 0.134 0.017 1.078
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exp(β̂0) = 0.09 is the odds of hyponatremia in the referent group,
i.e. with a weight change between -1.0 to -0.1 kg.

exp(β̂3) = 4.365 is the odds ratio of hyponatremia for those runner
with a weight change between 1.0 to 1.9 kg compared to runner
with a weight change between -1.0 to -0.1 kg.
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Predicted probability

Question: What it the risk of hyponatremia for those runners who
gain between 0 and 1 kg?

êst = log(odds(Y |X4 = 1)) = β̂0 + β̂4 = −2.408 + 0.942 = −1.466

P(Y |X4 = 1) = exp(−1.466)
1+exp(−1.466) = 0.188
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Covariance matrix:
b0 b1 b2 b3 b4 b5 b6

b0 0.121 -0.121 -0.121 -0.121 -0.121 -0.121 -0.121
b1 -0.121 0.821 0.121 0.121 0.121 0.121 0.121
b2 -0.121 0.121 0.375 0.121 0.121 0.121 0.121
b3 -0.121 0.121 0.121 0.248 0.121 0.121 0.121
b4 -0.121 0.121 0.121 0.121 0.189 0.121 0.121
b5 -0.121 0.121 0.121 0.121 0.121 0.299 0.121
b6 -0.121 0.121 0.121 0.121 0.121 0.121 1.133

95% CI for log(odds(Y |X4 = 1))

−1.466± 1.96×
√

0.121 + 0.189 + 2 · (−0.121)) = (−1.979,−0.954)

95% CI for P(Y |X4 = 1)

invlogit(−1.979,−0.954) = (0.121, 0.278)
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Predicted response

wtdiffc p odds rr or
3.0 to 4.9 1 2.500 8.651 27.778
2.0 to 2.9 0 0.778 5.299 8.642
1.0 to 1.9 0 0.393 3.416 4.365
0.0 to 0.9 0 0.231 2.271 2.564
-1.0 to -0.1 0 0.090 1.000 1.000
-2.0 to -1.1 0 0.065 0.734 0.717
-5.0 to -2.1 0 0.012 0.144 0.134
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Graphical presentation (OR)
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Graphical presentation
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