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Categorical Data Analysis

The analysis of a response (or outcome) variable that is categorical,
i.e. has a measurement scale consisiting of categories.

Examples in health sciences: surgery outcome (success, failure),
mortality (dead, alive), severity of a disease (none, mild, moderate,
severe), . . .

We will consider models for the more common cases where the
response variable is binary (i.e. can only assume two values 0, 1).

Crippa Alessio
3



Categorical Data Analysis Inference on one proportion 2 x 2 Table Intro Logistic regression

Aim and methods

Describe the binary response (or dependent variable), and possibly,
how its distribution changes according to levels of explanatory
variables (or independent predictors).

Different methods:
1. univariate analysis and analyses of association (tables)
2. regression models for binary data (logistic and logbinomial)
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Marathon data
Dataset: marathon.RData

Outcome: Hyponatremia risk (Serum sodium concentration ≤ 135
mmol/liter)

Descriptive abstract
Hyponatremia has emerged as an important cause of race-related
death and life-threatening illness among marathon runners. We
studied a cohort of marathon runners to estimate the incidence of
hyponatremia and to identify the principal risk factors.

Hyponatremia among Runners in the Boston Marathon, New
England Journal of Medicine, 2005, Volume 352:1550-1556.
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load(url("http://alecri.github.io/downloads/data/marathon.Rdata"))
glimpse(marathon)

Observations: 488
Variables: 18
$ id <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, ...
$ na <dbl> 138, 142, 151, 139, 145, 140, 142, 140, 141, 13...
$ nas135 <fct> na > 135, na > 135, na > 135, na > 135, na > 13...
$ female <fct> female, male, male, male, female, female, male,...
$ age <dbl> 24.20534, 44.28200, 41.96304, 28.19713, 30.1820...
$ urinat3p <fct> >=3, <3, <3, >=3, <3, <3, <3, <3, <3, <3, <3, <...
$ prewt <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,...
$ postwt <dbl> NA, NA, NA, NA, 50.68182, 55.68182, 59.31818, 5...
$ wtdiff <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,...
$ height <dbl> 1.72720, NA, NA, 1.72720, NA, 1.60655, NA, NA, ...
$ bmi <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,...
$ runtime <dbl> NA, 161, 156, 346, 185, 233, 183, 162, 182, 190...
$ trainpace <dbl> 480, 430, 360, 630, NA, NA, 435, 450, 435, 440,...
$ prevmara <dbl> 3, 40, 40, 1, 3, 25, 19, 2, 80, 10, 16, 3, 2, 8...
$ fluidint <fct> Every mile, Every mile, Every other mile, Every...
$ waterload <fct> Yes, Yes, NA, Yes, Yes, Yes, Yes, No, Yes, Yes,...
$ nsaid <fct> Yes, Yes, NA, No, Yes, No, Yes, No, Yes, Yes, N...
$ wtdiffc <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,...
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Notation

We are interested in making inference on a binary variable Y .
It can only assume two values: 1 with probability p and 0 with
probability 1− p.

Y is a random variable that follows a Bernoulli distribution with
parameter p.

Y ∼ Bernoulli(p) :
fY (y) = P(Y = y) = py (1− p)1−y , y ∈ {0, 1}.

We want to make inference on the proportion (or probability) of
success p.
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Inference on one proportion
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We randomly sample n observations yi from a certain population.

OBS: the observations are independent from each other.

We assume that there is underlying population proportion (p) that
is the same for all the individuals. We wish to estimate that
probability based on our sample.

The OLS method are not particularly appropriate here: the observed
values are either 0/1, while the predicted value is a probability. We
can instead use an alternative method: maximum likelihood.
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The likelihood function

The probability for an individual i P(Yi = yi) = pyi (1− p)1−yi ,
yi = 0 or yi = 1.

The probability of observing the sample we have selected is given by
the product of individual probabilities:

P(Y1 = y1, . . . ,Yn = yn) =
∏n

i=1 pyi (1−p)1−yi = L (p|(y1, . . . , yn))

This quantity is also known as the likelihood function. It is a
function of the known parameter p, and the sample observations
y1, . . . , yn.
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The method of maximum likelihood provides an estimate of p that
maximize the likelihood function, i.e. the probability of obtaining
the observed data.

Mathematically and computationally easier to work with the
logarithms.
` (p|y1, . . . , yn) =

∑n
i=1 (yi log(p) + (1− yi) log(1− p))

Crippa Alessio
11



Categorical Data Analysis Inference on one proportion 2 x 2 Table Intro Logistic regression

Maximum likelihood

Given the data, we maximize the log-likelihood function with
respect to p.

Maximization typically requires an iterative algorithm.

Suppose we collect the following sample of 10 observations: 0, 1, 1,
1, 1, 1, 0, 0, 1, 0

We need to find the value of p that maximizes the likelihood of the
observed data.
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p lik loglik min_loglik

0.1 0.0000007 -14.237 14.237
0.2 0.0000262 -10.549 10.549
0.3 0.0001750 -8.651 8.651
0.4 0.0005308 -7.541 7.541
0.5 0.0009766 -6.931 6.931
0.6 0.0011944 -6.730 6.730
0.7 0.0009530 -6.956 6.956
0.8 0.0004194 -7.777 7.777
0.9 0.0000531 -9.843 9.843

p̂ = 0.6 is the more likely value among the considered values.
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Central Limit Theorem

The maximum likelihood estimate of the population proportion is
the sample proportion

p̂ =
∑n

i=1 yi
n

Suppose that we draw 500 observations and 50 of them experienced
the outcome of interest (Y = 1).

The population proportion p is estimated to be 50/500 = 0.1 (10%).
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Based on a large sample size n >> 0, P̂ ∼ N (p, σ/
√

n),

where σ =
√

p(1− p)

A 95% confidence interval for population proportion p can be
obtained as

p̂ ± 1.96
√

p̂(1− p̂)/n

0.1± 1.96
√

0.1(1−0.1)
500 = 0.1± 1.96 · 0.013 = (0.07, 0.13)
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Interactive web app

https://gallery.shinyapps.io/CLT_prop/
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Hyponatremia risk

Hyponatremia is a condition that occurs when the level of sodium is
very low (in the article defined as 135 mmol per liter or less):

Y =

0 if na > 135 mmol/liter

1 if na ≤ 135 mmol/liter
----------------------------
nas135 n perc
----------------------------
na > 135 426 87.3
na <= 135 62 12.7
----------------------------

Crippa Alessio
18



Categorical Data Analysis Inference on one proportion 2 x 2 Table Intro Logistic regression

The estimate for the risk is: p̂ = 62
426+62 = 0.127

About thirteen percent of the marathon runners had hyponatremia
(a serum sodium concentration of 135 mmol per liter or less).

The 95% confidence interval for the proportion can be calculated as

0.127± 1.96
√
0.127(1− 0.127)/488 = (0.0975, 0.1565)

We are 95% confident that the risk of hyponatremia is between 10%
and 16%.
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Measures of disease occurrence

I Risk/prevalence: p = cases/total =
∑n

i1 yi/n

I Odds: odds = p/(1− p) =
∑n

i1 yi/
(
n −

∑n
i1 yi

)
Relations p = odds

1+odds and odds = p/(1− p)

The probability or risk of experiencing hyponatremia was 62/488 =
0.13.

The odds of experiencing hyponatremia was 62/426 = 0.15.
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Interpretation of risk
We expect 13 cases for every 100 marathon runners.
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Interpretation of odds

We expect 15 cases for every 100 non-cases.
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2 x 2 Table
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Question: Is the risk of hyponatremia the same for men and
women?

------------------------------------
---------female----------

nas135 male female Total
------------------------------------
na > 135 297 129 426

92.2 77.7 87.3

na <= 135 25 37 62
7.8 22.3 12.7

Total 322 166 488
100.0 100.0 100.0

------------------------------------

Crippa Alessio
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The Chi-square test
Test if the proportions of cases of hyponatremia is the same for men
and women.

H0 : p1 = p2

The Pearson Chi-Square statistics is based on the comparison of
observed (o) and expected (e) counts.

X 2 =
4∑

j=1

(oj − ej)2

ej

Under the null hypothesis of independence X 2 ∼ χ2
1
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Cell Contents
|-------------------------|
| N |
| Expected N |
|-------------------------|

Total Observations in Table: 488

|
| male | female | Row Total |

-------------|-----------|-----------|-----------|
na > 135 | 297 | 129 | 426 |

| 281.090 | 144.910 | |
-------------|-----------|-----------|-----------|

na <= 135 | 25 | 37 | 62 |
| 40.910 | 21.090 | |

-------------|-----------|-----------|-----------|
Column Total | 322 | 166 | 488 |
-------------|-----------|-----------|-----------|

Statistics for All Table Factors

Pearson's Chi-squared test
------------------------------------------------------------
Chi^2 = 20.83654 d.f. = 1 p = 5.001948e-06

Pearson's Chi-squared test with Yates' continuity correction
------------------------------------------------------------
Chi^2 = 19.54746 d.f. = 1 p = 9.81313e-06
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The Pearson Chi-square statistic is 20.84 and the p-value is low (less
than 0.01).

We reject the null hypothesis that the proportions of hyponatremia
is the same for men and women.

In particular, the risk of hyponatremia among females (22%) is
approximately three times the risk of hyponatremia among males
(8%).
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Measures of association
Exposed (X = 1) Unexposed (X = 0)

Cases (Y = 1) a b m1

Non-cases (Y = 0) c d m0

n1 n0 n

I Risk Ratio: RR = p1
p0
, with p1 = a

n1
and p0 = b

n0

I Odds Ratio: OR = a/c
b/d = ad

bc

Relation RR = OR/(1− p0 + p0 × OR)

https://kenkleinman.shinyapps.io/odds-tool/
Crippa Alessio
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Confidence interval for Risk Ratio
Inference for RR and OR are based on their log transformation.

log(RR) = log
(p1

p0

)
= log(p1)− log(p0)

Based on large sample size (n >> 0), the distribution of the sample
log(RR) is approximately normal with mean equal to the population
log(RR) and variance equal to

Var(log(RR)) = 1
a −

1
n1

+ 1
b −

1
n0

SE (log(RR)) =
√

1
a −

1
n1

+ 1
b −

1
n0
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The 95% CI for the log(RR) can be calculated as

log(RR)± z0.975SE(log(RR))

The 95% CI for the RR is obtained by exponentiating the 95% CI
for the log(RR)

exp (log(RR)± z0.975SE(log(RR)))
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Confidence interval for Odds Ratio

log(OR) = log
(p1(1− p0)

p0(1− p1)

)
= log(p1)+log(1−p0)−log(p0)−log(1−p1)

Based on large sample size (n >> 0), the distribution of the sample
log(OR) is approximately normal with mean equal to the population
log(OR) and variance equal to

Var(log(OR)) = 1
a + 1

b + 1
c + 1

d

SE(log(OR)) =

√
1
a + 1

b + 1
c + 1

d
Crippa Alessio
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The 95% CI for the log(OR) can be calculated as

log(OR)± z0.975SE(log(OR))

The 95% CI for the OR is obtained by exponentiating the 95% CI
for the log(OR)

exp (log(OR)± z0.975SE(log(OR)))
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RR = 37·322
25·166 = 2.872

log(RR) = log(2.872) = 1.055

SE(log(RR)) =
√

1
37 −

1
166 + 1

25 −
1

322 = 0.241

95% CI for log(RR): 1.055± 1.96 · 0.241 = (0.583, 1.527)

95% CI for RR: (exp(0.583), exp(1.527)) = (1.791, 4.604)

Interpretation: the risk of hyponatremia among women is 2.872
(95% CI 1.791, 4.604) times higher than in men.
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OR = 37·297
25·129 = 3.408

log(OR) = log(3.408) = 1.226

SE(log(OR)) =
√

1
37 + 1

25 + 1
129 + 1

297 = 0.28

95% CI for log(OR): 1.226± 1.96 · 0.28 = (0.677, 1.775)

95% CI for OR: (exp(0.677), exp(1.775)) = (1.968, 5.9)

Interpretation: the odds of hyponatremia among women is 3.408
(95% CI 1.968, 5.9) times higher than in men.
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with(marathon,
twoby2(exposure = relevel(female, 2), outcome = relevel(nas135, 2)))

2 by 2 table analysis:
------------------------------------------------------
Outcome : na <= 135
Comparing : female vs. male

na <= 135 na > 135 P(na <= 135) 95% conf. interval
female 37 129 0.2229 0.166 0.2925
male 25 297 0.0776 0.053 0.1124

95% conf. interval
Relative Risk: 2.8708 1.7914 4.6007

Sample Odds Ratio: 3.4074 1.9701 5.8936
Conditional MLE Odds Ratio: 3.3982 1.9037 6.1528

Probability difference: 0.1453 0.0790 0.2186

Exact P-value: 0
Asymptotic P-value: 0

------------------------------------------------------
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Intro Logistic regression
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Why not linear regression?

Yi = β0 + β1Xi + εi

Major problems:

I it is not appropriate to model Y as a linear function of the
parameters because Y has only two values;

I the predicted values can be any positive or negative number,
not just 0 or 1;

I the conditional distribution of Y |X is Bernoulli, not normal;

I the values of 0 and 1 are arbitrary.
Crippa Alessio

37



Categorical Data Analysis Inference on one proportion 2 x 2 Table Intro Logistic regression

The important part is not to predict the numerical value of Y , but
the (conditional) probability that success or failure occurs.

P(Yi = 1|Xi) = E[Yi = 1|Xi ] = β0 + β1Xi

Major problems:

I the right hand side of the equation can be any number, but the
left hand side can only range from 0 to 1;

I It turns out the relationship is not linear, but rather follows an
S-shaped (or sigmoidal) curve.

Crippa Alessio
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To obtain a linear relationship, we need to transform this response
too, P(Yi = 1|Xi). The function needs to

I not to be restricted to values between 0 and 1;

I form a linear relationship with our parameters.

Crippa Alessio
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The logistic function

The logistic function describes the mathematical form on which
the logistic model is based.

This function is defined as

logistic(x) = ex

1 + ex

It describes an S-shape curve

Crippa Alessio
40



Categorical Data Analysis Inference on one proportion 2 x 2 Table Intro Logistic regression

0.00

0.25

0.50

0.75

1.00

−5.0 −2.5 0.0 2.5 5.0

x

lo
gi

st
ic

(x
)

Crippa Alessio
41



Categorical Data Analysis Inference on one proportion 2 x 2 Table Intro Logistic regression

I The logistic function ranges between 0 and 1 and it is probably
the main reason the logistic model is so popular.

I The model is designed to describe a probability, which is always
some number between 0 and 1.

I In epidemiological terms, such a probability gives the risk of an
individual getting a disease.

Crippa Alessio
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Logistic regression model

It is mathematical model to make inference on the probability of a
binary outcome given a set of covariates.

It can be used for any type of exposure: binary, continuous, or
categorical covariate values.

It allows adjustment for confounding, assessment of effect
modification (interaction).

Estimation method: Maximum likelihood (yields point estimates,
standard error estimates, confidence intervals, and p-values)

Crippa Alessio
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The empty model (no predictors)
The logistic model can be defined as

logit (P(Y )) = log
( P(Y )
1− P(Y )

)
= log (odds(Y )) = β0

Recalling the relation between odds and probability
(p = odds/(1 + odds)), the model can also be written as

P (Y = 1) = exp(β0)
1 + exp(β0) = invlogit(β0)

The last equation is ofter referred to as the invlogit function. It
is very useful to go from log odds to risk of the outcome.
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mod0 <- glm(nas135 ~ 1, data = marathon, family = "binomial")
summary(mod0)

Call:
glm(formula = nas135 ~ 1, family = "binomial", data = marathon)

Deviance Residuals:
Min 1Q Median 3Q Max

-0.5213 -0.5213 -0.5213 -0.5213 2.0313

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.9273 0.1359 -14.18 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 371.6 on 487 degrees of freedom
Residual deviance: 371.6 on 487 degrees of freedom
AIC: 373.6

Number of Fisher Scoring iterations: 4
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Interpretation of regression coefficient

β̂0 = −1.93 is an estimate of the log odds of hyponatremia.

The interpretation of the coefficients (on the log scale) is quite
cumbersome. It is usually better to interpret their exponential

exp(β̂0) = exp(−1.93) = 0.15 is an estimate of the odds
hyponatremia

We expect 15 cases for every 100 non-cases.
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We are often interested to express the results in terms of predicted
probabilities:

P̂(Y = 1) = invlogit(log(odds)) = invlogit(β̂0) = exp(β̂0)
1+exp(β̂0) =

exp(−1.93)
1+exp(−1.93) = 0.13

We expect 13 cases for every 100 runners.
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Confidence interval for predicted probabilities

The β coefficients are estimated by maximum likelihood. For large
samples, the distribution of the β coefficients is approximately
normal and confidence interval based on standard normal
distribution can be constructed.

NB the confidence intervals are constructed on the log odds.
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95% CI for the log odds:

β̂0 ± 1.96 · SE(β̂0) = −1.93± 1.96 · 0.136 = (−2.2,−1.66)

The 95% CI for P(Y ) is the invlogit of the 95% CI of the log odds.

( exp(−2.2)
1 + exp(−2.2) ,

exp(−1.66)
1 + exp(−1.66)

)
= (0.111, 0.19)
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